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Abstract— Camouflage object detection in low-contrast
scenes faces severe challenges due to the high similarity between
the foreground and background in multiple dimensions, such
as color, shape, and texture. To improve the detection accuracy
and generalization ability, this paper proposes an improved
TMLCOD model based on the DaCOD algorithm and optimizes
it for RGB-D camouflage target detection tasks. Firstly,
in the RGB modal feature extraction stage, a Dynamic
Adaptive Triplet Attention (DATA) module is introduced, which
adaptively adjusts the weight of each branch through the
dynamic weight fusion mechanism, and combines with efficient
linear attention to reduce the computational complexity. Thus,
the global receptive field and computational efficiency of the
model are improved. Secondly, in the stage of feature fusion and
target localization, an Efficient Adaptive Multi-Scale Attention
(EAMSA) module is introduced to enhance the perception
ability of low-contrast targets by focusing on the foreground
and background regions with multiple attention heads. Finally,
the loss function design is optimized by combining the weighted
BCE and IoU loss with the structure loss, and introducing a
dynamic weight adjustment mechanism to adaptively balance
the contribution of different loss terms in the training process,
to effectively alleviate the problems of boundary blurring and
background interference. The experimental results show that
compared with the original DaCOD, the main evaluation index,
weighted F-measure (F’) of the improved TMLCOD model is
increased by 0.75%, 1.65%, and 0.98%, respectively, on the
three data sets of CAMO, COD10K, and NC4K. The ability
to depict the target boundary and retain details in complex
background scenes is significantly enhanced. In addition,
compared with the current mainstream methods, TMLCOD
has a more stable detection performance in low-contrast scenes
and shows better generalization ability when detecting complex
targets.

Index Terms—Camouflage object detection, Computer vision,
Three-channel attention mechanism, Cross-modal learning,
Separable attention

I. INTRODUCTION

ALIENT Object Detection (SOD) is a fundamental task
in the field of computer vision, aiming to identify and
localize the most visually distinctive objects within a scene.
These salient regions typically exhibit strong contrast in
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color, texture, or brightness compared to their surroundings,
making them easier to detect. This technique has been widely
applied in practical scenarios such as automated surface
defect detection [1].

In contrast, Camouflaged Object Detection (COD)
presents a more challenging research direction. This
task involves detecting targets that are highly integrated
with the background, where visual characteristics such
as color, texture, and edges closely resemble the
surrounding environment. As a result, the detection
process becomes significantly more difficult. Unlike
conventional SOD methods that rely on strong visual
disparities between foreground and background, COD
requires more sophisticated techniques to identify subtle
differences. Camouflage is prevalent in both natural and
artificial environments. In nature, organisms use camouflage
to blend into their surroundings in order to evade predators
or ambush prey. Similarly, in military, surveillance, and
industrial applications, camouflage techniques are employed
to conceal objects effectively. Figure 1 illustrates the
progression from easily recognizable salient objects to
highly concealed camouflaged targets.

salient< :> hidden

Fig. 1. Diagram of the transition from salient target to camouflaged (hidden)
target.

The core challenge of camouflage object detection is
how to accurately segment and locate the object from the
complex background and interference factors (such as noise,
occlusion, etc.). This task is an intensive prediction problem,
which requires the model to have strong feature extraction
ability and detailed identification ability. Early COD methods
mainly rely on manual feature extraction or expert knowledge
for prediction, but these methods often have low accuracy
due to the difficulty of capturing small differences between
the camouflaged target and the background. In recent years,
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with the rapid development of deep learning technology
and the open-source of large-scale datasets (such as CAMO
[2] and CODI10K [3]), COD methods based on deep
learning have gradually become mainstream. Among them,
some biological heuristics have made significant progress.
For example, C2F-Net [4] proposes a Dual-branch Global
Context (DGCM) module to optimize global information
fusion; ZoomNeXt [5] designs a Scale Merging Subnetwork
to simulate the visual strategy of human eyes when observing
blurred objects, to enhance the ability to distinguish
between foreground and background. R2CNet [6] introduces
a Referring Feature Enrichment module to improve the
recognition ability of specific camouflage objects.

However, most COD methods are still limited to RGB
modality, while the human visual system not only relies
on color, texture, and other information when recognizing
objects, but also uses 3D depth information for perception
and judgment. Biological and evolutionary studies have
shown that depth information is crucial in recognizing the
position, shape, and orientation of objects, so the introduction
of RGB-D (color-depth) information can effectively enhance
the detection ability of COD tasks. In recent years,
RGB-D salient object detection has gradually become a
research hotspot because depth information can provide rich
geometric and spatial cues, which can help improve the
detection accuracy. However, research on RGB-D COD is
still in its infancy and has not been widely explored.

To solve the above problems, this paper proposes an
improved method based on depth-assisted Camouflage
Object Detection (DaCOD [7]), which further explores the
contribution of depth modalities in salient object detection
at low-contrast boundaries. Firstly, an improved ternary
attention mechanism (DATA) is introduced in the RGB modal
feature extraction stage, which improves the sensitivity
of fine-grained features and reduces the interference of
redundant information by capturing multi-directional feature
interactions. Secondly, in the feature location and prediction
stage, an improved Mask Separable Attention (EAMSA)
module was added to focus on the foreground and
background regions, respectively, to improve the detection
ability of camouflaged objects. In addition, in the Loss
function design, we define five Loss functions, from
pixel-level classification (Loss 1), structure optimization of
salient regions (Loss 2 and 4), difficult sample processing
(loss 3), to final global optimization (loss 5), forming a
hierarchical multi-stage loss design scheme. The Binary
Cross Entropy (BCE) and weighted IOU loss function were
combined, and the dynamic weight adjustment mechanism
was used to adaptively balance the contribution of each loss
term in the training process, to balance the contribution
of term in the training process and alleviate the problems
such as fuzzy boundary and complex target area. Through
this design, the model can focus on different features at
different stages, which not only improves the segmentation
accuracy but also enhances the robustness of camouflage
object detection.

II. THE OVERALL STRUCTURE OF THE DACOD
ALGORITHM FRAMEWORK

The DaCOD algorithm framework mainly studies how
to make full use of depth information to assist the task

of camouflage object detection. Since there is no data
set specifically designed for RGB-D camouflage object
detection, this method first generates the corresponding depth
map from the RGB image by the monocular depth estimation
technique, converts the depth map into a three-channel format
after normalization, and concatenates it with the RGB image
in the batch dimension for input into the network.

Inspired by the Salient Object Detection (SOD) task, the
framework adopted a hybrid backbone network structure of
Swin-L [8] and ResNet-50 [9]. This design fully combines
the advantages of Transformer and Convolutional Neural
Networks (CNNs) to achieve more efficient collaborative
feature learning. In the feature extraction stage, the algorithm
selected important features through the hierarchical feature
selection mechanism, and used the Batch Segmentation
(BSB) module to split these features, and extracted RGB
features and depth features respectively.

In the feature fusion stage, the Cross-Modal Asymmetric
Fusion (Cross-Modal Asymmetric Fusion, CAF) module was
used in the framework. The CAF module combines RGB
and depth features in an asymmetric manner, aiming to
preserve the key details of depth information and effectively
avoid possible depth ambiguity. This design idea fully
reflects the adaptability to cross-modal feature differences
and the attention to fusion quality, so as to improve the
performance of camouflage target detection tasks. In the
SWI-L part, the network will receive the input and generate
a four-level feature representation, denoted as {S;|i =
1,2,3,4}. Since the Transformer encoder can capture global
semantic information more accurately, the model chooses
to use the highest-level features for object localization. By
inputting the high-level prediction results of the RGB branch
into the depth branch, the model can focus its attention on
the regions with more accurate localization, thus effectively
reducing interference.

For ResNet-50, the high-level feature output is discarded
because these features are usually too small due to
downsampling, thus missing rich edge detail information.
Therefore, the output of ResNet can be represented as
{R;]i = 1,2,3}, and finally, the feature representation is
generated by co-learning as R1, R2, R3, S4. These features
are subsequently separated by the Batch Segmentation (BSB)
module according to RGB and depth modalities, and the
number of channels is compressed by the CBR (convolution,
Batch Normalization, and ReL.U) module. Finally, the modal
features output by the model are Sgepth for depth features,
as well as joint features { REGB RPP™"|; =1 2 3},

After multi-level feature generation, the model combines
RGB and depth features through an asymmetric fusion
mechanism (CAF module). RGB features and depth features
are input into ABr (RGB attention module) and Abd (deep
attention module), which contain channel attention and
spatial attention, respectively, to further enhance the semantic
information. Among them, semantically enhanced features
S79b g9erth and initial prediction Figure Sderth can be
obtained by the following formula:

S1 = SA(CA(SY")), S5 = Conv(S7") (1)

SYPh = CA(STP™), Serth = ConV (SP™")  (2)
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Where CA denotes channel attention operation, and SA
denotes spatial attention operation. Then, at each stage
of feature decoding, the feature was gradually optimized
by using the Feature Refinement (FR) module. The RGB
prediction results are unidirectionally transferred to the depth
branch by asymmetric fusion. For example, the operation in
the RGB branch can be expressed as follows:

F%h = Ry x sig(up(S5e*)) 3)

Where Up represents the upsampling operation and
sig represents the Sigmoid normalization operation. The
cross-modal fusion is only passed from the RGB branch
to the depth branch, where the depth features are refined
by Up-sampling (Up) and Sigmoid normalization (sig)
operations. This fusion method preferentially uses rich
information of RGB images to enhance depth features, while
reducing the interference caused by unreliable depth maps.
Finally, the model combines the RGB features and the refined
depth features to generate the final prediction result. Through
this design, the model realizes the efficient fusion of RGB
and depth information, and further improves the performance
of camouflage object detection. The whole process with the
final predicted image can be expressed as follows:

penth _ {R xsiglup(S;7), i=3
RIP™ x sig(up(Fp9)), i=1,2
Fenth _ {Rg:”: x (1= siglup(S;), i=3 o
“ RIP™ % (1 — sig(u (nggfl))), 1=1,2
Prefina = CBR(F}E + Ficrthy (6)

III. ALGORITHM MODEL IMPROVEMENT SCHEME

In order to further improve the performance of the DaCOD
model in RGB-D camouflage object detection tasks, two
key innovative improvement modules are added: the Triplet
Attention module and the Multi-Scale Attention (MSA)
module. In the feature extraction stage, Swi-L is used
to capture global semantic information, while ResNet-50
retains local edge details. Subsequently, the modal features
are separated by the BSB module, and cross-modal fusion
is performed by the Triplet Attention module. The fused
features are processed by the MSA module for multi-scale
enhancement to achieve more accurate detection and location
of camouflage targets. This optimization method significantly
optimizes the original method from the perspective of
cross-modal feature fusion and multi-scale information
capture, as shown in Figure 2.

A. Improve the Triplet Attention module

The main advantage of the Triplet Attention [10] module
is its cross-dimensional attention mechanism. Traditional
Attention mechanisms, such as SE [11] and CBAM [12],
usually work only in the channel or spatial dimension,
while Triplet Attention combines the attention calculation
in three dimensions: width (C direction), height (H
direction) and space (W direction), which can capture
the interaction between features more comprehensively.

Moreover, compared with some other complex Attention
mechanisms, the design of the Triplet Attention module adds
almost no additional computational overhead. The attention
computation in each direction is achieved by a simple
convolution operation with low computational complexity
and does not require a significant increase in additional
model parameters.

However, the traditional Triplet Attention module
enhances the feature expression ability through the
multi-branch attention mechanism of static fusion weights,
but does not consider the importance of different input
features. To solve this problem, a Dynamic Weight Generator
module based on global statistics is designed and added to
the Triplet Attention module. The branch fusion weights are
generated by the mean and variance of the input features.
The global statistics are calculated as shown in Equations
(7) and (8).

meany =

H W
S wenw ¥

1 h=1w=1

MQ

C-H-W

(&

c

H
R W cwH 2

c=1h=1w

—meany)?®  (8)

M%
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1

The mean value mean; reflects the overall feature strength
of the BTH sample. The variance var, reflects the dispersion
of the feature distribution of the BTH sample. The input
feature x is a four-dimensional tensor whose elements are
all real numbers with dimension B x C x H x W, and b
is the sample index. The specific implementation details are
that the global mean and variance of the BTH sample are
obtained after summing and averaging the eigenvalues of all
channels C, all heights H, and all widths W of the BTH
sample.

Then, the statistics mean;, and var, are fed into the fully
connected network to generate the fusion weights of each
branch as shown in Equation (9) :

= Softmax(Wsy - ReLU (W - [meany; varp]))  (9)

Of these, W, € R**2, W, € R3*“. Firstly, the statistics
of each sample are concatenated into a 2D vector, and the
final output 3D weight vector w, € R3 is normalized by
Softmax.

Finally, the output of each branch is weighted and
dynamically fused according to the weight w;. The specific
calculation formula is shown in Equation (10):

K

Z wp i, - Branchy(xp)
k=1

Fused, = (10)

Where K = 3 (including spatial branches) or K = 2 (without
spatial branches). By assigning score weight to each sample
dynamically, the deviation of feature expression caused by
a fixed weight is effectively avoided. The calculation of the
global statistics does not depend on the number of channels
C, and the calculation is efficient and only requires the input
of two-dimensional statistics, and the number of parameters
is very small (the parameter of the fully connected layer is
2 x 444 x 3 =20). In this way, the improved module can
be adapted to any input dimension, which is more consistent
with the idea of transpose on three dimensions of width (C
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Fig. 2. The overall architecture of TMLCOD.

direction), height (H direction), and space (W direction) in
the Triplet Attention module.

It is also noted that the space complexity of the standard
attention mechanism is O(N?)(N = H x W), which limits
the application of the model in high-resolution scenarios.
Therefore, the Linear Attention module [13] is introduced
into the Attention Gate to reduce the computational
complexity to O(N). The standard attention calculation
formula is Equation (11), and the linear attention calculation
formula is Equation (12).

T

K
Attention(Q, K, V) = Softmax( @

14 11
\/g) (11)

Q = AvgPool(Q), K = AvgPool(K),
Linear Attention(Q, K, V) = Softmaz(QKT)V

12)

Where Q, K, and V are the query, key, and value matrices,
respectively. Finally, the cross-dimensional interaction was
realized by Permute and Tensor Reshape in the forward
propagation process. The structure of the improved DATA
module is shown in FIG. 3, which mainly contains three
core components: dynamic weight generator, linear attention
gating mechanism, and channel-independent branch.

B. Masked Separable Attention module improvement

In the task of multi-scale camouflage object detection, how
to effectively capture and fuse multi-scale information has
become one of the key issues. In the literature [14], a Masked
Separable Attention (MSA) module is proposed. Firstly, the
spatial information is encoded by using the Multi-Dconv

o]
o
a i
= A
Q
g Cross-model
3 Asymmetic Fusion
23
o v B > z
B (Dynamic Adaptive Triplet Attention )
BSB) (BSB) (BSB
ResNet50

Prediction GT

o=
= Depth

Head Transposed Attention (TA) module. The formula of
TA is as follows:

TAQ,K,V) =YV -Softmax(<LK) (13)

Wherea is a learnable scaling parameter and Q, K, and
V are the query, key, and value matrices, respectively, which
can be generated by three independent 1 * 1 convolutions
followed by a 3 * 3 depth convolution.

Next, a prediction mask that can be generated at each
feature level is introduced into the TA module as a
front-background contrast prior, and all attention heads
are divided into three groups: foreground head (F-TA),
background head (B-TA), and normal TA. Finally, the feature
aggregation is performed by a 3 * 3 convolution, the formula
is as follows:

7Z = Convsxs([F —TA,B—TA,TA]) (14)

In order to improve the performance of the multi-head
self-attention (MSA) module in complex visual tasks,
this study systematically optimized its computational
efficiency, feature fusion strategy, and multi-scale feature
extraction capability. The specific application flow chart
of the optimized Efficient Adaptive Multi-Scale Attention
(EAMSA) module in the cross-modal asymmetric fusion
module is shown in Figure 4. Specific improvements include
the following three aspects:

The first aspect is the optimization of the attention
mechanism. The current MSA module adopts the standard
self-attention mechanism, which is excellent at capturing
global dependencies, but its computational complexity is
high at O(N?)(N is the sequence length), especially when
dealing with high-resolution images. In order to reduce
the computational complexity of the model and improve
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Fig. 3. The Triplet Attention Overall framework diagram.

the efficiency of the model, the Efficient Attention [15]
mechanism is introduced in the research. The Efficient
Attention mechanism generates the Query, Key, and Value
matrix through the convolutional layer, and performs L2
normalization on the Q and K matrix to suppress the
feature divergence problem in high-dimensional space. Its
calculation process can be expressed as follows:

Q, K,V = Convix1(X),
Q = L2Norm(Q),
K = L2Norm(K)

15)

Then, the feature channel is divided into h attention heads,
and the attention weight is calculated in blocks to reduce
memory usage. The formula for calculating the attention
score (16) is as follows:

Ef ficient Attention(Q, K, V) =

A 7T
Softmax QK -T] (16)

Vd

Where Q, K, and V represent the query, key, and value
matrices, respectively, di is the dimension of the key
vector and is the learnable temperature coefficient, and 7
is used to adjust the sharpness of the attention distribution.
Reduce complexity from O(N?) to O(NlogN) with
channel grouping and parallel computing, while retaining

global dependency capture. In this way, the consumption of
computing resources is significantly reduced on the premise
of maintaining the feature interaction capability, and it is
suitable for high-resolution image processing.

The second aspect is the optimization of feature fusion.
In the original MSA module, the feature fusion part relies
on a simple convolution operation, which makes it difficult
to dynamically weigh the importance of different branches,
especially in the cross-modal task, which easily leads to the
loss of key information. Therefore, to improve the effect of
feature Fusion, the Adaptive Fusion strategy is introduced
in this study. The Lightweight attention module is designed
to automatically generate channel-level fusion weights based
on input features. The weight generation process is defined
as:

W =
Softmax(Comuvi w1 (ReLU(Comvix1 (X1 + X2 + X3))))
a7

Where X7, X5, X3 is the branch features to be fused, and
W € R3>*H*W are the three sets of spatial adaptive weights.
Then, feature fusion is achieved by channel-by-channel
multiplication and summation, as shown in formula (18) :

3
Xfused = Z Wi ® Xi

i=1

(18)

Where © represents channel-by-channel multiplication,
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Fig. 4. Flowchart of the application of the improved Efficient Adaptive Mult

ensuring that key features are enhanced while redundant
features are suppressed. It significantly improves the
flexibility of the branch feature interaction and effectively
enhances the expression ability of fine-grained features in
the task of camouflage target detection.

Third, the single-scale convolution operation in the
original module makes it difficult to capture the context
information of different granularities in the image, especially
the problem of blurred edges or insufficient sensitivity
to small-scale targets. An improved scheme of dilation
convolutional parallel structure is adopted, and multi-scale
features are extracted in parallel by convolutional layers with
multiple dilation rates to expand the receptive field:

X1 = Convsy3(X; dilation = 1)

Xo = Convsx3(X;dilation = 2) (19)
X3 = Convsy3(X; dilation = 4)
After multi-scale features are concatenated, channel

compression is carried out through 1x 1 convolution to retain
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key information:

Xmultifscale = Conlel(concat(Xla X27 XB)) (20)

On the whole, multi-scale context enhancement enables
the improved model to capture both local details and global
structure information at the same time and improves the
accuracy of the model in dealing with complex backgrounds.
Finally, the above module is integrated into the MSA
module (as shown in Figure 5). After the normalization
of the input features by LayerNorm, the input features
are respectively input into the foreground attention head
(F-TA), background attention head (B-TA), and ordinary
attention head (TA) for pre-processing. Each branch then
generates Attention weights through an Efficient Attention
mechanism to suppress redundant calculations. The Adaptive
Fusion module dynamically fuses the three-branch output,
strengthens task-related features, and the Multi-Scale Feature
module further extracts multi-granularity features to enhance
the model’s adaptability to scale changes.
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C. Optimizing the loss function

To further enhance the performance and robustness of
the model, an improved loss function is proposed, which
integrates multiple loss components to take advantage of
their complementary advantages. Similar to the original
design, the loss function in the study consists of two
main components: modal-specific attention loss and feature
refinement, and asymmetric fusion loss. However, some
improvements are introduced in the training process to
improve the accuracy and optimize the gradient flow, further
improve the model’s learning ability for multi-scale features,
and alleviate the problem of class imbalance.

For the RGB branch, the combination of binary
cross-entropy (BCE) loss and IoU loss continues to be used
to effectively balance classification and positioning. BCE
losses ensure accurate pixel classification, while IoU losses
enhance the spatial consistency of predictions, as shown in
equation (21) :

Lbceiou = Lbce + Liou (21)

For deep branches, the loss function is refined by
combining weighted binary cross-entropy (WBCE) losses
and weighted IoU (WiOU) losses. WBCE loss applies
an adaptive weighting scheme based on the structural
importance of different areas, emphasizing challenging
areas. WiOU loss further improves accuracy by punishing
misalignments in areas of interest. Thus, depth-specific losses
are expressed as formula (22) :

wai = wace + Lwiou (22)

The final attentional module loss is shown in equation (23)

Lattention = Lbcsiou(sggba G) + wai(Sg7 G) (23)

Where G represents the true value.

In the stage of feature refinement and asymmetric
fusion, the loss formula is extended by combining multiple
prediction scales. Specifically, the loss predicted by the RGB
and depth branches is calculated before the final fusion, as
well as the additional loss term for the final output. To
achieve this, a mixed loss formula combining BCE, IoU,
and WBCE losses is used. Intermediate forecast losses are
given by:

Lfision = wai(FZ:ngv G) + wai(F,gQ; G) +2x (Pfinal; G)
(24)
To further improve performance, we introduced
dynamically weighted structural loss (Lggrycture) to adapt
the training period. Structure loss uses an edge-sensing
weighting mechanism to assign higher importance to regions
with complex structures, thereby improving fine-grained
feature learning. The formula is:
(W - Lbce) + (W - Lioy)

Lstructure = W (25)

Where W represents the structural importance map
obtained by the adaptive pooling operation.

In summary, the final loss function of this study
dynamically integrates all the above loss functions and
adjusts the weights of each period to balance the features
from different levels.

Lfinal =1x Lbce,ou(Pla G) + 1x Lstructure(PQa G)+
2 x Lbceiou (P37 G) +1x Lstructure(Péla G)
+ (1 + )‘) X Lstructure(P57 G)

(26)
Among them, A is a scaling factor related to the course of
epochs, which increases as the training proceeds, enabling
the model to pay more attention to fine-grained details in
the later stage. By combining these improved loss functions,
the loss function in this study can not only ensure stable
optimization but also improve the overall detection accuracy
by resolving structural inconsistencies and enhancing spatial
consistency.

IV. ANALYSIS AND DISCUSSION OF EXPERIMENTAL
RESULTS

A. Experimental software and hardware environment

The hardware environment of this experiment is mainly
equipped with a NVIDIA RTX 3090(24GB memory) GPU
instance, Intel Xeon Platinum 8375C CPU, and 72G memory
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to ensure the efficiency of large-scale model training. The
software environment of the experiment is implemented
based on the PyTorch framework, using Swin-L and
ResNet-50 as dual backbone networks, and using ImageNet
pre-trained weights for collaborative learning. The SGD
optimizer with momentum 0.9 is used, the weight decay
coefficient is, and the initial learning rate is set to 0.001 and
dynamically adjusted through the poly strategy. The uniform
input image size is pixels, the batch size is set to 6, and a
total of 60 epochs are trained to fully converge the model.
It provides reliable technical support for multi-scale feature
learning and complex scene target recognition tasks.

B. Dataset and evaluation metrics

In this study, the proposed improved method is evaluated
on three widely used benchmark datasets, namely CAMO
[2], CODI10K [3], and NC4K [16]. The CAMO dataset
covers 1250 camouflage images of different categories, of
which 1000 are used for training and 250 for testing.
CODIOK is currently the largest benchmark dataset. It
collects 5066 camouflage images, including 3040 training
images and 2026 test images, covering five main categories
and 69 sub-categories. NC4K is a more recent camouflaged
object detection dataset containing 4121 images, which is
mainly used to evaluate the generalization ability of the
model. In this experiment, the training sets of CAMO and
CODI10K and their corresponding depth images are mainly
used as training data, while the remaining parts of the CAMO
and CODI10K datasets and the NC4K dataset are used for
testing.

In terms of evaluation indicators, four commonly used
standard indicators are used for quantitative evaluation,
including structure measure (S,) [17], adaptive E-measure
(Egd) [18], weighted F-measure (FE’) [19], and Mean
Absolute Error (MAE) [20]. The structural metric mainly
measures the structural similarity between the predicted
results and the real results, and evaluates the ability of
the model in capturing the structural information of the
image by calculating the structural similarity index (SSIM)
of the image. The adaptive E-measure is an evaluation
metric based on edge and region information, which can
adaptively adjust the weights to more accurately evaluate
the performance of the model in edge detection and region
segmentation. The weighted F-measure takes into account
both Precision and Recall and evaluates the performance of
the model on different classes more comprehensively using
a weighted average, which is especially suitable for datasets
with imbalanced classes. Mean absolute error quantifies the
prediction error of a model by calculating the average of the
absolute errors between the predicted results and the true
results and is an intuitive and commonly used indicator to
evaluate the performance of a model.

C. Analysis of experimental results

In order to fully verify the effectiveness of the Dynamic
Adaptive Triplet Attention (DATA) module and the Efficient
Adaptive Multi-Scale Attention (EAMSA) module in the
proposed improved model, in this study, these modules are
progressively introduced on the benchmark model, and their
impact on model performance is evaluated. Multiple widely

used Camouflage Object Detection (COD) datasets were used
in the experiment, and quantitative analysis was carried out
from multiple dimensions to ensure the scientific and fair
nature of the experiment.

(A) Analysis of the influence of different improvement
modules on the model

In order to verify the effectiveness of the proposed
improved method, this study introduces the DATA module,
the EAMSA module, and the improved Loss function (Loss)
based on DaCOD, and makes a comprehensive comparative
analysis of the three data sets CAMO, COD10K, and NC4K.
Table 1 summarizes the performance of different models and
evaluates the detection accuracy and error by four metrics
Sas E;d . g, and MAE.

After adding the DATA module to DaCOD, the AUC
is increased from 0.9224 to 0.9331 (+1.16%), which also
verifies that the DATA module optimizes the generalization
ability of the model by enhancing the feature interaction
between channels. The evaluation index F' in the CAMO
dataset is increased from 0.796 to 0.799, which is a relative
increase of 0.38%, indicating that the detection accuracy of
the target area has been improved. On the Cod10K dataset,
F 5’ is increased from 0.729 to 0.735, a relative increase of
0.82%. In the NC4K dataset, the index Egd is increased
from 0.923 to 0.927 (+0.43%), indicating that the feature
expression ability of the DATA module is enhanced in
complex backgrounds.

When only EAMSA is added based on DaCOD, the
improvement in four indicators is slightly smaller than that
of the DATA module, but it still shows a good enhancement
effect. The AUC increased from 0.9224 to 0.9356 (+1.43%),
which was significantly better than the independent effect of
the DATA module (+1.16%), which verified the advantage
of EAMSA in global contrast modeling. EAMAS mainly
improves the learning ability of global contrast information,
especially on the NC4K dataset with complex background,
S, improves from 0.874 to 0.878 (+0.46%), but Egd slightly
decreases from 0.923 to 0.922. This also suggests that the
subsequent research direction of this study needs to combine
other modules to balance global and local features.

After introducing DATA + EAMSA at the same time,
the overall performance of the model is significantly
improved. The proposed method achieves 0.741 and 0.822
on the COD10K and NC4K datasets, respectively, which
are 1.65%and 0.98% higher than the baseline DaCOD
model, indicating that the multi-scale feature fusion enhances
the learning ability of the target region boundary. After
the combination of the two, the model has a significant
improvement in all indicators, which proves the effectiveness
of feature fusion.

In summary, the experimental results fully show that the
DATA module can enhance the feature expression through
channel interaction, and the EAMSA module optimizes
global contrast learning. The collaboration of the two
modules significantly improves the overall ability of the
model to detect multi-scale boundaries, which makes the
model achieve the best performance on the three data sets of
CAMO, CODI10K, and NC4K. It is especially outstanding in
complex backgrounds and provides an efficient solution for
real-time applications in low-contrast environments, such as
military reconnaissance and ecological monitoring.

Volume 33, Issue 9, September 2025, Pages 3587-3598



Engineering Letters

TABLE I
Comparison of Different Models on CAMO, Cod10K, and NC4K Datasets

Setting CAMO CodI0K NC4K

Soat  EZTH Fg1 Ml | Sat BT Fg1 Ml | Sat ELT Fgr M|
DaCOD 0855 0911 0796 005 | 084 0908 0729 002 | 087 0923 0814 003
DaCOD+TA 0851 091 0799 005 | 084 0912 0735 002 | 087 0927 0818 0.3
DaCOD-MSA 0.855 0905 0795 005 | 0.84 0896 0733 002 | 087 0922 0818 0.3
DaCOD-TA-MSA 0.855 0912 0799 005 | 084 0912 0741 002 | 087 0926 0822 0.3
DaCOD-TA-MSA-Loss (Ours) ~ 0.855 0915  0.802 0.04 | 0.84 0912 0741 002 | 087 0927 0822 003

TABLE II

Comparison of Quantitative Results Between the Improved Method and Other 11 COD Algorithms on Three Benchmark Datasets (The Top Three

Results Are Shown in Red, Blue, and

, Respectively.)

Method Venue CAMO Cod10K NC4K

Saf EZT Fgt MU | S«% BT Fgt M | Saf BT Fgt MJ
SINet [21] CVPR 2020 0.751 0.771 0.606  0.100 | 0.771 0.806 0.551 0.051 | 0.810  0.873 0.772  0.057
MGL [22] CVPR 2021 0.775 0.847 0.673 0.088 | 0.814 0.865 0.666  0.035 - - - -
PFNet [23] CVPR 2021 0.782 0.852 0.695 0.085 | 0.800 0.868 0.660 0.040 | 0.829  0.887 0.745 0.053
UGTR [24] ICCV 2021 0.785 0.859 0.686 0.086 | 0.818 0.850 0.667 0.035 - - - -
LSR [25] CVPR 2021 0.793 0.826 0.725 0.085 | 0.793 0.868 0.685 0.041 | 0.839 0.883 0.779  0.053
SINet-V2 [26] TPAMI 2021  0.820 0.882 0.743  0.070 | 0.815 0.887 0.680  0.037 | 0.847 0.903 0.769  0.048
PrerNet [27] ACM 2022 0.790 0.854 0.708 0.077 | 0.813 0.894 0.697 0.034 | 0.834 0.897 0.763  0.050
ZoomNet [28] CVPR 2022  0.820 0.878 0.752 0.838 0.892 0.029 | 0.853 0.904 0.784 0.043
SegMaR [29] CVPR 2022  0.815 0.872 0.753  0.071 | 0.833 0.893 0.724  0.034 | 0.841 0.902 0.781 0.046
ZoomNetXt [S] TPAMI 2024 0.069 | 0.848 0.910 0.738  0.026 0.925
DaCOD [7] Am 2023 0.855 0911 0.796  0.051 0.874 0.814  0.035
Ours - 0.855 0.915 0.802  0.049 | 0.848 0.912 0.741  0.026 | 0.878 0.927 0.822  0.034

(B)Analysis of the influence of different improvement
modules on the model

In the comparison experiment, this paper compares
the improved model with the baseline model. And the
comparison of the 11 most advanced COD model methods
(SINet [21], MGL [22], PFNet [23], UGTR [24], LSR
[25], SINet-V2 [26], PreyNet [27], ZoomNet [28], SegMaR
[29], ZoomNetXt [5], and DaCOD [7]) Although they are
among the more advanced methods, our method still exhibits
performance advantages over recent methods. To ensure a
fair comparison, this paper either uses the results reported in
its counterpart paper or reproduces its model with the same
recommendation Settings and training data.

As shown in Table 2, the proposed method achieves
the best performance on all data sets and all evaluation
indicators, which fully verifies the effectiveness of the
proposed improvement strategy. Among them, compared
with the current latest ZoomNetXt [5] method, the four
indicators S, Egd, Fg’ and MAE of the proposed method
on CAMO, CODI10K and NC4K datasets are increased by
3.37%, 0.44%, 0.44% and 8.7% on average. It shows that
the proposed improvement not only improves the accuracy
of salient objects but also effectively reduces the error.

At the same time, compared with UGTR [24] method
based on Transformer structure, the four indicators S, Egd,
Fg and MAE of the proposed method on CAMO and
CODI10K datasets are increased by 7.0%, 6.6%, 9.3%, and
7.3% on average. This shows that the multi-scale feature
fusion strategy proposed in this paper can effectively enhance
the perception ability of the model to the target area without
relying on the global self-attention mechanism, thereby
improving the detection performance.

This study improved based on DaCOD [7] and achieved
comprehensive surpasses in multiple indicators. As shown
in Table 2, compared with the baseline model, the .S, index
of the proposed method on CAMO, CODI0K, and NC4K

datasets is increased by 0.6%, 0.1%, and 0.4%, respectively,
indicating that the improved model can obtain more stable
target prediction results in different scenarios. In addition,
the Egd index is increased by 0.4% (0.911 — 0.915) on
the CODI10K dataset and 0.4% (0.923 — 0.927) on the
NC4K dataset, indicating that the proposed method has better
robustness in the detection task of small targets and complex
backgrounds. The absolute difference of Fig index on the
CODI10K dataset is increased by 1.2% (0.729 — 0.741), and
the absolute difference on the NC4K dataset is increased by
0.8% (0.814 — 0.822), indicating that the proposed method
has better robustness in the detection task of small targets
and complex backgrounds.

In terms of error index MAE, the proposed method
achieves further reduction on all datasets, in which the MAE
of the CAMO dataset is reduced from 0.051 to 0.049, the
MAE of the COD10K dataset is reduced from 0.028 to 0.026,
and the MAE of the NC4K dataset is reduced from 0.038 to
0.034. It is worth noting that on the NC4K dataset, the MAE
reduction of the proposed method reaches 10.5%, indicating
that the improved feature extraction and fusion strategy can
effectively reduce false detections and improve the accurate
localization ability to camouflaging targets.

According to the above comparison experiments, the
DATA and EAMSA mechanisms proposed in this paper play
an important role in multi-scale feature extraction and object
localization. Compared with UGTR[23], which only relies on
the Transformer structure, the method in this paper adopts
a lightweight multi-scale fusion strategy to improve the
detection accuracy and reduce the computational overhead so
that the model can show strong competitiveness in different
COD tasks. In addition, the performance improvement
of the proposed method is particularly significant on
the NC4K dataset, which indicates that the proposed
improved mechanism has better generalization ability in
more challenging complex background data.
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Fig. 6. Loss function plot.

In summary, the experimental results fully verify the
effectiveness of the proposed method, which achieves
the current optimal performance on multiple datasets and
evaluation indicators, and provides a more accurate and
efficient solution for the camouflage target detection task.

Precision-Recall Curve
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Fig. 7. PR plot.

Figure 6 shows how the model changes with different loss
functions during training. It can be observed that with the
increase in training rounds, all loss functions show a gradual
decline, and the model starts to converge, which indicates

Fig. 8. Comparison of detection results of camouflaged targets assisted by
depth information.

that the model is constantly learning and optimizing. In
addition, the stability of the loss function in the later training
period indicates that the model training process is stable and
no overfitting occurs.

Figure 7 shows the precision-recall (PR) curve of the
model, where the area under the curve (AUC) reaches 0.9427,
indicating that the model has high accuracy in distinguishing
between positive and negative samples. The tendency of the
PR curve to approach the top right further confirms that
the model maintains high precision while maintaining high
recall, which is particularly important for class imbalance
problems.

A visual comparison of improving the accuracy of
camouflaged object detection with the help of depth
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information is shown in FIG. 8. In Figure 9, there are
three groups of comparison images, each group shows the
original image, the corresponding depth map, the Ground
Truth segmentation results (GT), and the segmentation results
obtained by the TMLCOD model (Ours). In the second
and third rows, the effectiveness of the TMLCOD method
in the face of blurred background and complex texture
is demonstrated, and it can be seen that the boundary of
the detection result is also smoothed by improving the
loss function. Therefore, by combining RGB and depth
information, the TMLCOD model can more accurately
identify and segment camouflage targets, and maintain high
accuracy even when the target and the background have
similar colors.

Synthesizing the analysis results in Figs. 7 and 8,
the following conclusions can be drawn: Firstly, the
proposed model shows excellent generalization ability and
classification performance on the test set, which benefits
from the reasonable design of the model structure and
the effectiveness of the optimization algorithm. Secondly,
the model training process is stable, and the parameters
are adjusted properly, which provides a solid foundation
for subsequent model optimization. Although the model
already performs well, there is still room for further
improvement. Future work can focus on exploring different
model architectures and training strategies to further improve
the performance of the model.

FIG. 9 shows the comparison of segmentation results of
different methods in the COD task. The figure includes
Ground Truth (GT), our method (Ours), and several other
representative methods, such as PFNet, ZoomNet, SegMaR,
UGTR, MGL, etc. Each row corresponds to a test sample,
showing the original image, the truth map, and the

Comparison of segmentation effect of different methods in camouflage target detection.

segmentation results of different methods.

From the figure, it can be found that the TMLCOD model
method can generate results closer to the true segmentation
(GT) in multiple scenes, especially when dealing with
samples with complex backgrounds and occlusions. For
example, in the samples in the first and third columns,
other methods lead to incomplete or inaccurate segmentation
results because the background is too similar to the target,
while the TMLCOD method can better identify the boundary
and details of the target.

V. CONCLUSION

Based on the DaCOD network architecture, this
paper systematically optimizes the perception ability and
computational efficiency of the RGB-D camouflage object
detection model. Firstly, by designing a dynamic weight
fusion mechanism and introducing linear attention, the
flexibility and pertinence of the DATA module for
multi-dimensional feature interaction are enhanced, so that
it can dynamically focus on key spatial regions and
significantly improve the feature discrimination ability in
complex scenes. Secondly, the Efficient Attention mechanism
is introduced to replace the traditional self-attention
calculation, and the strategy of using convolutions with
different expansion rates to capture multi-scale information
and adjusting the feature contributions of different branches
through dynamic weights is combined to reduce the
computational complexity of MSA module and strengthen
the dynamic fusion ability of multi-scale features. Finally, the
loss function design was improved, and the dynamic weight
adjustment mechanism was introduced, which effectively
alleviated the training bias and boundary ambiguity
problems. The improved model shows broad application
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prospects in the fields of military reconnaissance, ecological
protection, medical image analysis, and security monitoring.
For example, in military scenarios, this technology can
accurately identify natural camouflaging targets (such as
camouflage equipment or hidden fortifications) and improve
battlefield situation awareness. In ecological monitoring, it
can assist in tracking wild animals with high camouflage
ability and promote non-intrusive biodiversity protection. In
the medical field, its fine-grained feature extraction ability is
helpful in detecting early lesions or tiny abnormal structures
in medical images. In the future, this technology can be
further combined with edge computing and multi-modal
perception (such as infrared or radar data) to achieve
real-time and lightweight embedded deployment and provide
robust technical support for complex dynamic scenes
such as autonomous driving and intelligent security. The
experimental results show that the proposed method has the
advantages of both performance and efficiency, which lays an
important foundation for the practicality and generalization
of camouflage target detection technology.
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