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Abstract—Pedestrian detection in crowded scenes remains
challenging due to occlusion, scale variation, and computa-
tional constraints. This paper proposes an enhanced RT-DETR-
based framework with three key improvements: 1) Wavelet
Pooling replaces conventional up/downsampling operations to
preserve small-object details and enhance multi-scale feature
extraction; 2) Cascaded Group Attention (CGA) substitutes
traditional multi-head self-attention, reducing computational
complexity while improving global context modeling; 3) Small-
Object Enhanced Pyramid (SOEP) optimize multi-scale feature
fusion robustness. Evaluations on the CrowdHuman dataset
demonstrate performance gains of 1.6% and 2.7% in Precision
and mAP50-95, respectively, with exceptional results in occluded
and small-object scenarios. The solution not only delivers
efficient real-time detection but also exhibits strong generaliz-
ability for applications including instance segmentation, video
surveillance, and autonomous driving.

Index Terms—pedestrian detection, dense scenes, real-time
detection, deep learning.

I. INTRODUCTION

W ITH the rapid advancement of computer vision and
deep learning technologies, pedestrian detection has

made substantial progress [1] and has found widespread
applications in areas such as autonomous driving, video
surveillance, and person re-identification [2]. Despite these
advancements, pedestrian detection in dense crowd scenarios
still faces significant challenges, including occlusion, target
overlap, scale variation, and computational limitations [3].

Pedestrian detection technology originates from general
object detection algorithms. Contemporary object detection
methods primarily rely on deep learning and can be broadly
categorized into three major paradigms: two-stage R-CNN
variants, single-stage YOLO models [4], and DETR-based
approaches. Among these, single-stage CNN-based detectors
are particularly suitable for real-time applications due to their
efficiency. However, their performance degrades in dense
crowd scenarios. This is primarily due to two factors: first,
CNN-based models typically rely on Non-Maximum Sup-
pression (NMS) as a post-processing step, which increases
computational overhead and slows detection speed when
handling numerous overlapping targets. Second, in densely
populated scenes such as crowded streets, occlusion among
pedestrians, vehicles, and buildings, as well as overlapping
multi-scale objects and complex backgrounds, hinders the
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ability of convolutional kernels to extract detailed object fea-
tures and spatial relationships, ultimately reducing detection
accuracy [5].

In contrast, Transformers have shown superior capabilities
over traditional CNNs in modeling long-range dependencies
within sequential data. The multi-head self-attention mecha-
nism enables the effective capture of global context and com-
plex inter-object relationships. Vision Transformer (ViT), the
first pure Transformer-based image classification model, has
demonstrated performance surpassing CNNs when trained
on large-scale datasets. This has led to the emergence of
hybrid models that integrate the strengths of both CNNs and
Transformers.

DETR (DEtection TRansformer) is a representative ex-
ample of such hybrid architectures, combining CNNs for
feature extraction with Transformers for global reasoning. Its
end-to-end design eliminates the need for anchor boxes and
NMS, achieving more accurate and stable object detection.
However, the high computational cost associated with large
Transformer modules remains a major bottleneck for real-
time deployment.

To address this issue, RT-DETR [6] was proposed as
a more efficient alternative. It outperforms state-of-the-art
YOLO models [7] in both accuracy and inference speed.
RT-DETR adopts ResNet as the backbone for feature ex-
traction and introduces an efficient hybrid encoder that sepa-
rates intra-scale attention from cross-scale fusion to capture
global dependencies effectively. Additionally, it incorporates
a PAFPN-like structure for top-down and bottom-up feature
fusion. The resulting dense predictions are processed through
a query selection mechanism and passed to the decoder,
which predicts object categories and locations, retaining the
Top-K results as final outputs.

Despite its improvements, RT-DETR faces limitations in
dense crowd detection tasks. Specifically, the downsampling
operations in the ResNet backbone cause the loss of fine-
grained information relevant to small objects. As noted in
prior studies, small object features are typically concen-
trated in shallow feature maps, yet are easily lost through
multi-stage downsampling. Furthermore, existing research
highlights both the strong correlation between feature maps
and the inefficiency of standard convolutions due to re-
dundant computations. To mitigate these issues, we replace
conventional downsampling modules with Wavelet Pooling,
which integrates wavelet transform and pooling operations,
preserving structural detail and enhancing the representation
of small objects.

Moreover, the original Attention-In-Feature Interaction
(AIFI) module primarily focuses on global interactions
within individual scales. However, in high-resolution feature
maps, relying solely on global attention results in insuffi-
cient local feature extraction, limiting the ability to capture
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Fig. 1: Overall architecture of the model

fine-grained details such as edges and textures. Addition-
ally, AIFI lacks effective support for multi-scale feature
fusion—particularly the integration of low-level detail with
high-level semantics—which leads to information loss during
feature propagation. The Cross-scale Feature Fusion (CCFF)
module in RT-DETR, while efficient and lightweight, mainly
focuses on medium and large objects. It lacks the capacity to
enhance critical regions and often processes irrelevant back-
ground regions inefficiently, which negatively impacts both
detection accuracy and real-time performance—especially in
crowded scenes with severe occlusion.

To further enhance the model’s performance in dense
pedestrian detection tasks, this paper introduces several key
improvements. First, Wavelet Pooling [8] replaces traditional
downsampling operations to preserve small-object features.
Second, the standard multi-head self-attention mechanism is
upgraded to CGA (Cross-scale Global Attention) [9], which
strengthens multi-scale feature interactions and improves
adaptability to densely populated scenes. Finally, the feature
fusion strategy is refined by integrating the SOEP (Semantic-
Oriented Edge Perception) module, which enhances the
fusion of low-level spatial details and high-level semantic
features. Together, these modifications improve the model’s
robustness, reduce computational cost, and enhance real-time
detection capability in complex environments with dense,
multi-scale objects [10].

In summary, the improvements and contributions of this
article are as follows:

1) Integrated wavelet transform with pooling operations
to optimize up/downsampling, improving multi-scale
feature extraction while minimizing feature map reso-
lution loss.

2) Replaced multi-head attention with a grouped cas-
caded mechanism, reducing computational complexity
and enhancing long-range dependency modeling. This
preserves global information representation, boosting
detection accuracy.

3) Combined SPDConv(Space-to-Depth Convolution) and
CSPOmniKernel module(a convolutional module based
on CSP(Cross Stage Partial) structure and Omni-
Kernel) to preprocess and fuse multi-scale features,

enabling global-to-local feature learning. This elevates
small-object detection precision while maintaining low
computational overhead and post-processing costs.

II. RELATED WORK

Pedestrian detection initially relied on handcrafted fea-
tures such as Histogram of Oriented Gradients (HOG) and
Scale-Invariant Feature Transform (SIFT), combined with
traditional classifiers like Support Vector Machines (SVMs)
[11] and Haar cascades [12]. While these early approaches
provided fundamental detection capabilities, they exhibited
poor robustness in complex environments due to limited
feature expressiveness and sensitivity to occlusion, scale
variation, and background clutter.

The emergence of Convolutional Neural Networks (CNNs)
significantly advanced the field. Two-stage detectors, such
as the R-CNN series, achieved remarkable accuracy im-
provements but suffered from limited real-time performance.
In contrast, single-stage frameworks like YOLO and SSD
offered efficient end-to-end detection pipelines suitable for
real-time applications. Subsequent iterations of YOLO [13]
(e.g., YOLOv7 [14] and YOLOv8) introduced architectural
refinements and enhanced training strategies. However, these
models still encounter limitations in detecting small objects
and handling densely crowded scenes [15].

More recently, Transformer-based models have opened
new avenues for object detection. DETR, as a pioneering
work in this domain, employs self-attention mechanisms to
model global dependencies, thereby eliminating the need
for components like anchor boxes and Non-Maximum Sup-
pression (NMS). Various DETR variants have been pro-
posed to address its limitations. Conditional DETR improves
the object query mechanism, Deformable DETR introduces
multi-scale deformable attention to reduce computational
costs [16], and Sparse DETR adopts sparse attention for
greater efficiency. Despite achieving high detection accuracy,
DETR and its variants generally suffer from substantial
computational overhead, limiting their deployment in real-
time scenarios.

To bridge this gap, RT-DETR was proposed as a
lightweight and real-time DETR-based model. It enhances
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TABLE I: Advantages of Wavelet Pooling

Metric Wavelet Pooling Traditional Pooling

Info Retention Preserves global structure + low-frequency texture Keeps local maxima/mean values

Noise Robustness Actively suppresses high-frequency noise Vulnerable to local noise interference

Scale Adaptability Multi-level decomposition enables multi-scale perception Single-scale perception only

Reconstruction Capability Partial detail recovery via IDWT (Inverse DWT) Irreversible information loss

computational efficiency through optimized feature extrac-
tion and fusion modules while maintaining high accuracy.
This advancement positions DETR-based architectures ahead
of traditional YOLO-series algorithms in real-time object
detection tasks, offering new momentum for progress in
pedestrian detection. RT-DETR builds upon the Transformer
architecture to explore more efficient strategies for feature
encoding and target prediction, thereby improving both de-
tection precision and inference speed [17]. In contrast to
the YOLO series, which relies on anchor-based mechanisms
and feature pyramid networks, DETR-based models utilize
self-attention to enable end-to-end object detection without
requiring NMS, achieving a more effective trade-off between
accuracy and speed.

Currently, RT-DETR demonstrates the capability to per-
form object detection on high-resolution inputs at high
frame rates, while maintaining precise classification and
localization performance [18]. Its superior real-time char-
acteristics make it particularly well-suited for time-sensitive
applications such as autonomous driving and intelligent video
surveillance. With continued architectural optimization, RT-
DETR achieves a promising balance between accuracy and
efficiency, marking a significant milestone in the evolution
of object detection technology.

III. METHODOLOGY

The emergence of RT-DETR fills the gap in the application
of DETR series in real-time monitoring. Compared with
YOLO series, it achieves a more ideal balance between
accuracy and speed. Traditional max pooling and downsam-
pling convolutions lose high-frequency details such as edges
and textures during dimensionality reduction. On the other
hand, RT-DETR relies on the global modeling ability of
the Transformer, but the basic convolution operations in the
feature extraction stage cannot fully capture multi-scale in-
formation. Therefore, this paper proposes the introduction of
Wavelet Pooling wavelet transform and its inverse operations
to ensure bounding box regression and feature alignment for
object detection tasks.

Secondly, in order to enhance multi-scale feature interac-
tion and solve the memory consumption and computational
complexity of global attention, we divide the input features
into multiple groups, independently calculate attention within
each group, and use cascading operations to cascade multiple
attention modules, gradually enhancing the feature interac-
tion effect.

Thirdly, replacing traditional convolutions with SPDConv
[19] to convert spatial information into channel information
enhances the model’s ability to capture local details. Finally,

by introducing the CSPOmniKernel module, efficient integra-
tion of multi task shared features was achieved, significantly
optimizing the fusion effect of multi-scale features and en-
hancing the model’s receptive field and feature representation
ability. The network architecture of the model is shown in
the Fig. 1.

A. Wavelet Pooling

In the RT-DETR model, upsampling and downsampling
are key steps in feature extraction and fusion. Traditional
pooling methods are prone to losing detailed information
during downsampling, resulting in decreased performance
of the model in detecting small targets and edge blurred
targets. Upsampling operations such as deconvolution or
bilinear interpolation are also difficult to fully recover high-
frequency information, which affects the accuracy of target
localization. Therefore, this article introduces WaveletPool
for better information retention and reconstruction. In the
upsampling stage, WaveletUnPool fuses low-frequency and
high-frequency information through inverse wavelet trans-
form to reconstruct finer feature maps, significantly improv-
ing the accuracy of object detection, especially in small
object detection. In the downsampling stage, WaveletPool
utilizes a multi-component decomposition mechanism to pre-
serve the main information and store high-frequency compo-
nents to assist in dimensionality reduction, while extracting
multi-scale information and reducing redundant calculations,
making the feature pyramid network more efficient in multi-
scale object detection.

In dense pedestrian detection tasks, targets often have
variable scales, severe occlusion, and blurry edges, which tra-
ditional pooling methods are difficult to handle. By replacing
max pooling with WaveletPool, the model can better preserve
multi-scale information in the early feature extraction stage,
significantly enhancing its ability to capture pedestrian edges
and texture features, and reducing information loss. By
combining the inverse wavelet transform of WaveletUnPool,
the model can more accurately reconstruct feature maps,
improving the localization accuracy and recall rate of dense
pedestrian detection.

1) WaveletPool: Traditional pooling operations (such as
max pooling) are limited by local receptive fields and may
lose some useful information (such as edges and textures),
resulting in limited feature representation capabilities. In
order to address this issue and further improve the feature
extraction capability of the model by better preserving more
useful information while reducing resolution, this paper
introduces the Wavelet Pooling method based on Discrete
Wavelet Transform (DWT) to achieve multi-scale feature
compression, maximizing the preservation of key information
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Fig. 2: WaveletPool module principle

while reducing resolution. The core process is shown in Fig.
2.

The first decomposition The input feature map X ∈
RH×W×C is decomposed row-wise and column-wise to gen-
erate the low-frequency component LL1 and high-frequency
components LH1, HL1, and HH1.

X → DWT {LL1, LH1, HL1, HH1} (1)

Where low-frequency component is the global structure
and main texture extracted by the low-pass filter h, which
represents the low-frequency approximation information of
the image. The high-frequency component is the detail
features obtained by capturing the vertical, horizontal, and
diagonal directions of the image through the high pass
filter g. It is sensitive to features and has high information
redundancy. Specifically, it can be defined as:

LL1 = (X ∗ h)↓2 ∗ h
T
↓2

LH1 = (X ∗ h)↓2 ∗ g
T
↓2

HL1 = (X ∗ g)↓2 ∗ h
T
↓2

HH1 = (X ∗ g)↓2 ∗ g
T
↓2

(2)

where ↓ 2 represents downsampling with a stride of 2, and
∗ represents convolution operation.

High-frequency subbands were discarded and only LL1

was retained as the downsampling output. The feature map
X size was reduced to H

2 × W
2 × C .

The second decomposition Perform DWT again on the
reserved low-frequency sub-band LL1 to extract coarser
grained features (such as semantic information at the object
category level), while ensuring the sensitivity of the network
to targets of different scales (LL1, LL2) with varying sizes.

Advantage comparison Compared to max pooling or
average pooling, Wavelet Pooling achieves information in-
tensive downsampling by preserving global low-frequency
components. The advantages of Wavelet Pooling are shown
in Table I.

2) WaveletUnPool: To support subsequent upsampling or
feature fusion, WaveletUnPool can choose to store high-
frequency components and reconstruct high-resolution fea-
tures with low-frequency components through Inverse Dis-
crete Wavelet Transform (IDWT), which can significantly
reduce the problem of information loss in traditional anti
pooling operations.

For the low-frequency sub-band LL ∈ RH
2 ×W

2 ×C and the
high-frequency sub-band {LH,HL,HH} ∈ RH

2 ×W
2 ×C , the

reconstruction process of IDWT can be formally defined by

Fig. 3: CGA module

Eq.3.

Xrecon =

Low-frequency reconstruction︷ ︸︸ ︷
(LL ↑ 2) ∗ hT ∗ h +

Horizontal detail recovery︷ ︸︸ ︷
(LH ↑ 2) ∗ hT ∗ g

+ (HL ↑ 2) ∗ gT ∗ h︸ ︷︷ ︸
Vertical detail recovery

+(HH ↑ 2) ∗ gT ∗ g︸ ︷︷ ︸
Diagonal detail recovery

(3)

where notation ↑ 2 denotes upsampling by a factor of two
through interpolation (e.g., zero-padding or bilinear interpo-
lation) to double the spatial dimensions of the feature maps.
Through this framework, WaveletUnPool effectively restores
high-frequency details, thereby enhancing both the precision
and completeness of feature reconstruction.

B. Cascaded Group Attention

RT-DETR suffers from two key limitations due to its
reliance on conventional multi-head self-attention mecha-
nisms: First, when processing high-resolution images, its
computational complexity becomes prohibitively high - par-
ticularly as the number of spatial positions N increases,
the computational load grows quadratically, significantly
degrading model efficiency. Second, the Adaptive Instance
Feature Interaction (AIFI) module in its encoder requires
explicit positional encoding to capture spatial information.
This design not only increases model complexity but also
restricts flexibility since the positional encoding is resolution-
dependent.

To address the above issues, this paper adopts a new
attention mechanism - cascaded group attention (CGA). This
mechanism effectively reduces computational complexity
while retaining the ability to express global information
through innovative design of attention computation. The core
idea is to divide the input features into multiple groups,
calculate attention independently for each group, and then
inject the output of the precursor group into the subsequent
head through inter group cascade design to achieve feature
fusion, and finally integrate the output. The process is shown
in Fig. 3.

Feature Segmentation and Intra-group Attention Com-
putation The input features Xi ∈ RC×N are partitioned
along the channel dimension into h groups (corresponding
to h attention heads), where each group of features Xij ∈
R(C/h)×N is independently assigned to a distinct attention
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Fig. 4: SOEP architecture’s main branch and sub-modules

head. Each head then computes intra-group contextual rela-
tionships via the self-attention mechanism:

X̃ij = Attn(XijW
Q
ij , XijW

K
ij , XijW

V
ij ) (4)

where WQ
ij , WK

ij , WV
ij ∈ R(C/h)×dk correspond to the j-

th attention head in layer i. This group-wise decomposition
reduces the input channel dimension by a factor of h,
this design significantly decreases the FLOPs for QKV
projections and total parameters scale as O ((C/h)× dk) per
head instead of O (C × dk).

Inter-head Cascading and Feature Propagation Inject
the output of the precursor head into the input of the
subsequent head through cascading operations, gradually
enhancing feature expression:

X′
ij =

{
Xij , j = 1

Xij + X̃i(j−1), 2 ⩽ j ⩽ h
(5)

Here, X ′
ijserves as the new input for the jth head, achiev-

ing cross head feature fusion. At the same time, a token
interaction layer is introduced after Q projection to jointly
model local and global relationships, further enhancing spa-
tial perception capabilities.

Output Integration and Dimensionality Restoration
The output of all heads is concatenated and linearly projected
to restore dimensions:

X̃i+1 = Concat
[
X̃i1, X̃i2, . . . , X̃ih

]
WP

i , (6)

Among them, WP
i ∈ RC×C is the dimension mapping

matrix.

Through cascaded operations, the outputs from different
groups are progressively propagated and ultimately aggre-
gated into a global attention representation. This approach
significantly improves computational efficiency while effec-
tively capturing long-range dependencies, thereby enhancing
object detection accuracy.

In the improved RT-DETR model proposed in this paper,
CGA is applied to the AIFI (Adaptive Instance Feature
Interaction) module to replace the traditional multi-head self-
attention mechanism in RT-DETR. This improvement not
only reduces computational complexity but also eliminates
the reliance on explicit positional encoding, as CGA can
implicitly capture spatial relationships through cascaded lo-
cal and global information interaction. Additionally, inter-
head cascading effectively increases network depth without
requiring extra parameters, thereby enhancing model capac-
ity. Experiments show that when processing high-resolution
images, CGA maintains high detection accuracy while signif-
icantly reducing computational resource consumption, better
supporting real-time object detection.

C. Small Object Enhance Pyramid

The issue of missed detection for small objects is par-
ticularly prominent in dense crowd detection tasks. Tra-
ditional Feature Pyramid Networks (FPN) typically rely
on P3-P5 layers to process medium and large objects,
exhibiting limited multi-scale representation capability and
often insufficient detection accuracy for small objects. To
address this problem, the Small Object Enhancement Pyra-
mid (SOEP) proposes an innovative spatial-channel joint
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optimization strategy. Its core concept is to enhance small
object features through the deep spatial reorganization tech-
nology SPDConv (Space-to-Depth Convolution) to achieve
zero-information-loss downsampling, while incorporating the
cross-domain feature fusion mechanism CSP (Cross-Stage
Partial) to realize multi-granularity feature enhancement
through frequency-spatial dual-domain attention. Addition-
ally, it integrates the dynamic receptive field network Om-
niKernel, which employs anisotropic convolutional kernels
to construct omnidirectional perception fields, thereby im-
proving small object detection accuracy while maintaining
the original FPN’s computational efficiency.

The backbone architecture is shown in Fig. 4(a). First, the
input feature map undergoes an SPDConv transformation to
achieve lossless mapping from spatial dimensions to channel
dimensions. Subsequently, it passes through the CSPOm-
niKernel module, where one portion of features remains
unchanged while another portion undergoes Omni-Kernel
processing, employing multi-scale convolutions to construct
omnidirectional receptive fields and enhance small object
feature representation. Finally, RepC3 is employed for fea-
ture refinement to ensure effective information transmission.

1) SPDConv: SPDConv is a convolutional operation that
achieves downsampling by converting spatial information
into channel information while enhancing channel-wise in-
teractions. It can preserve more detailed information while
reducing the resolution of feature maps.

For an input X of size r × r, non-overlapping grid
partitioning is performed through tensor slicing operations.
The spatial information of each sub-region is then flattened
and stacked along the channel dimension, increasing the
channel count to C × r2 while reducing spatial dimensions
by a factor of r. The merged feature map subsequently
undergoes a 3×3 convolution to reduce channel dimensions
to the target size C ′ while maintaining spatial resolution at
half the original size. This process prevents high-frequency
signal loss inherent in traditional pooling or strided convo-
lution, preserving local spatial structures to enhance feature
representation while completely retaining small object details
such as edges and textures. The structure is illustrated in Fig.
4(b), where r = 2.

FSPD = Conv3×3 (SPDConv (X)) (7)

2) CSP: CSP is a network architecture that enhances
gradient flow and feature representation capability through
partial feature division and cross-stage transmission. The
structure is shown in Fig. 4(c).

The input feature map FSPD (denoted as X ′ for notational
convenience in this section) ∈ RH×W×C is first processed
by a 1×1 convolution to adjust channel dimensions, yielding
intermediate features X ′ ∈ RH×W×C . Subsequently, X ′ is
split along the channel dimension into two parts at ra-
tio e:Main branch Xok(channel proportion e, default 0.25)
undergoes Omni-Kernel operations to extract high-order fea-
tures, producing X ′

ok. Side branch XIdentity(remaining 1 −
e channels) is directly propagated to avoid information loss.
Finally, X ′

ok and XIdentity are concatenated along the channel
dimension and processed by another 1 × 1 convolution to
adjust the channel count.

Xok,XIdentity = Split (Conv1×1(X), [eC, (1− e)C])

FCSP = Conv1×1 (Concat (Omni-Kernel(Xok), XIdentity))
(8)

This design reduces computational complexity
from O(C2) to O(eC2), while the identity connection
in the side branch preserves the original gradient path,
mitigating the vanishing gradient problem in deep networks
and facilitating gradient interaction between the main and
side branches.

3) Omni-Kernel: Omni-Kernel is a feature enhancement
module that integrates multi-scale depthwise convolutions
with frequency-spatial attention kernels, designed to im-
prove the model’s multi-scale perception capability through
heterogeneous convolutional kernels and dynamic attention
mechanisms. Its core concept lies in decoupled modeling
via global, large-branch, and local branches to capture full-
scale information ranging from global context to local details,
thereby strengthening the model’s perceptual ability across
different scales and locations. The structure is shown in Fig.
4(d).

The input featuresXok are first preprocessed by a 1×1 con-
volution followed by GELU activation, yielding X ′, which is
then processed in parallel through Global, Large, and Local
branches.

Global branch The Frequency Channel Attention (FCA)
module first applies a 2D Fourier transform to X ′ to map
the features into the frequency domain, obtaining Xfft, which
enhances the model’s sensitivity to high-frequency informa-
tion such as textures and edges. It then generates frequency-
domain attention weights αfreq through adaptive average
pooling and a 1 × 1 convolution, which are element-wise
multiplied with Xfft to produce Xfca.

X′ = GELU(Conv1×1(Xok))

Xfft = F(X ′)

αfreq = Sigmoid (Conv1×1 (AdaptiveAvgPool(X ′)))

Xfca = F−1(αfreq ·Xfft)

(9)

Subsequently, Spatial-Channel Attention (SCA) is ap-
plied to Xfca for spatial compression and convolu-
tional operations, which suppresses noise while enhancing
small object saliency. The module generates spatial at-
tention weights αspat, performs element-wise multiplication
with Xfca, and finally refines the features through the Feature
Gating Module (FGM) to produce Xsca.

αspat = Sigmoid (Conv1×1 (AdaptiveAvgPool(Xfca)))

Xsca = FGM(αspat ·Xfca)
(10)

Large and Local branches The model employs hetero-
geneous depthwise separable convolutions (DWConv) with
varying kernel sizes — 31 × 1 (vertical elongated kernel),
1 × 31 (horizontal elongated kernel), 31 × 31 (global large
kernel), and 1×1 (local detail) — to capture multi-scale fea-
tures across different orientations and scales. These features
are then combined with the original input and Global branch
through residual connections.
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Fig. 5: Experimental result

Xout = DWConv31×1(X) + DWConv1×31(X)

+ DWConv31×31(X) + DWConv1×1(X)

+Xsca +X

(11)

Finally, the ReLU activation function and a 1×1 convolu-
tion are used to adjust the channel dimension, and the final
feature is outputted as X ′

ok

X′
ok = Conv1×1(ReLU(Xout)) (12)

The Omni-Kernel method achieves collaborative optimiza-
tion of multi-scale feature extraction and dynamic attention
modulation while maintaining lightweight, providing an ef-
ficient solution for small object detection.

Combining these innovative designs, SOEP not only im-
proves the detection accuracy of small targets, but also main-
tains low computational overhead, making it more adaptable
and efficient in real-time object detection tasks.

IV. EXPERIMENTS

A. Experimental environment

The configuration of the experimental environment is
shown in Table 2.

B. Dataset

Due to discoveries during actual debugging and consensus
among other researchers, the U-version RT-DETR model has
difficulty converging. If there is too little training data, there
may even be situations where indicator data is not displayed.
At the same time, due to limitations in the experimental
environment, this article chose a dataset with an equal
number of images.

The experimental dataset in this article is a variant of the
Crowd Human dataset, and the images are mainly sourced
from urban environments, including streets, squares, and
other places. The dataset contains 10000 images, of which
8500 are used for the training set, 500 for the validation
set, and 1000 for the testing set. The total number of

TABLE II: Experimental Environment Configuration

Category Configuration

GPU NVIDIA GeForce RTX 3090 (24GB)

CPU Intel Xeon Platinum 8362, 15 vCPU, 2.80GHz

Operating System Ubuntu 22.04 LTS

Python 3.12

Framework PyTorch 2.3.0 + CUDA 12.1

Model Base Ultralytics YOLOv8.0.201

Optimizer SGD

Image Input Size 640× 640

Epochs 100

Batch Size 4

Initial Learning Rate 0.01

Momentum 0.937

Weight Decay 0.0005

Loss Components GIoU, Classification, L1

Loss Weights λ1 = 0.05, λ2 = 0.5, λ3 = 0.1

pedestrian annotations in the dataset exceeds 30000, and the
number of pedestrian annotations in each image ranges from
1 pedestrian to hundreds of pedestrians. The main feature of
the dataset is that it contains a large number of dense crowd
scenes, where pedestrians are often occluded, overlapped,
and obscured, posing high challenges and suitable for pedes-
trian detection and various visual tasks such as pedestrian
tracking and pose estimation.

C. Evaluation metrics

To evaluate the performance of the improved RT-DETR
model for dense crowd detection, the following metrics were
used in this paper:

1) Precision(P): represents the proportion of samples
predicted as positive by the model that are actually positive.

P =
True Positives(TP)

True Positives(TP) + False Positives(FP)
(13)
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TABLE III: Ablation experimental results

model CGA SOEP Wavelet Pooling P(%) R(%) mAP50(%) mAP50-9(%)

Baseline 83.1 67.3 77.6 45.6

✓ 83.8 67.5 77.9 46.4

✓ 83.6 67.9 78.1 47.4

✓ ✓ 80.5 64.3 74.8 46.9

ours ✓ ✓ ✓ 84.7 69.4 79.3 48.3

TABLE IV: Comparative experimental results

model P(%) R(%) mAP50(%) mAP50-9(%)

Faster R-CNN 80.2 70.1 78.0 49.9

Mask R-CNN 79.8 69.5 77.0 47.0

YOLOv8n 81.5 65.3 76.4 48.1

YOLOv10n 80.5 64.3 74.8 46.9

YOLOv11n 81.0 64.9 75.4 47.4

DETR 61.1 60.5 63.1 45.9

Deformable-DETR 61.7 64.5 65.2 52.0

ours 84.7 69.4 79.3 48.3

TP represents the number of samples correctly predicted
as positive by the model, while FP represents the number
of samples incorrectly predicted as positive by the model.
In addition, FP represents the number of samples correctly
predicted by the model as negative examples, while FN
represents the number of samples incorrectly predicted by
the model as negative classes.

2) Recall(R): represents the proportion of samples that
are actually positive and correctly predicted as positive by
the model.

R =
True Positives(TP)

True Positives(TP) + False Negatives(FN)
(14)

3) mAP50: refers to the mean average precision when the
IoU (Intersection over Union) threshold is 0.5.

AP =

∫ 1

0

P (R) dR

mAP =
1

N

N∑
i−1

APi

IoU =
Area of Overlap
Area of Union

(15)

P(R) is the precision of the recall rate of R. N is the total
number of categories, and APi is the average precision of
the i-th category. IoU is the ratio of the overlap area Area of
Overlap between the predicted box and the real box to the
union area Area of Union, used to measure the positioning
accuracy of the detection box.

4) mAP50-90: refers to the average accuracy of the model
within the range of IoU threshold from 0.5 to 0.95 (step size
0.05).

5) Experimental results and comparative analysis: During
the training process, the model underwent 100 epochs of
training and ultimately achieved an accuracy of 84.7% and
a recall of 69.4% on the validation set. mAP50 and mAP50-
95 were 79.3% and 48.3%, respectively, indicating that
the model has good performance in object detection tasks,

especially when the IoU threshold is 0.5. Fig. 5 presents the
experimental results.

This article compares the method with the following
classic object detection algorithms: R-CNN series, YOLO
series, and DETR series. All comparison methods were run
on the same training and testing sets, and with the same
hyperparameter settings. Table IV shows the performance
comparison between the proposed method and the compara-
tive method on the crowd human validation set.

In summary, the model used in this experiment performs
well in object detection tasks, especially achieving high
levels of accuracy and mAP50. Although the performance
decreases at higher IoU thresholds (mAP50-95), the overall
model still has strong detection ability and high efficiency.

Analyzing the reason why the recall rate and mAP50-95 of
Faster R-CNN are higher than our model, it is possible that
Faster R-CNN uses a deeper and more complex backbone
network and its two-stage detection mechanism to process
detection tasks more finely, while our model has advantages
in speed and real-time performance.

The mAP50-95 of Deformable DETR is particularly high,
mainly because Deformable Convolution provides an adap-
tive receptive field and the Deformable Attention mechanism
retains the advantage of sparse sampling.

In addition, the inference speed of the model is 12.5 ms
per image, indicating that the model has high efficiency in
practical applications and can meet the needs of real-time
detection. It is expected to provide effective assistance for
applications such as autonomous driving in the future.

D. Ablation experiment

In order to further demonstrate the performance of the
model, we have recorded the ablation experiment results in
detail, and the Table III shows the progressive growth of the
model performance after adding different modules.

This paper uses RT-DETR (ReaNet-18 backbone) as the
baseline model for performance reference. As shown in the
table, the introduction of the CGA module leads to a slight
improvement in Precision, Recall, mAP50, and mAP50-95,
particularly with a 0.8 increase in mAP50-95, indicating that
the CGA module enhances the model’s overall detection
capability by strengthening contextual information.

After incorporating the SOEP module, the improvements
in Recall and mAP50-95 are more significant (Recall +1.5,
mAP50-95 +1.6), demonstrating that the SOEP module,
through multi-scale feature fusion, substantially enhances the
model’s detection performance for small objects and complex
scenes. Precision and mAP50 also show slight improvements,
suggesting that the SOEP module increases recall without
significantly raising false detections.
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With the addition of the WaveletPool module, all met-
rics exhibit further improvements. The notable gains in
Recall and mAP50-95 indicate that the WaveletPool mod-
ule strengthens the model’s detection ability through more
efficient feature extraction. The increase in Precision (+0.5)
further confirms that the WaveletPool module improves recall
while reducing false detections.

V. CONCLUSION

This study presents an enhanced RT-DETR-based model
that significantly improves object detection performance in
complex environments, especially for small and occluded tar-
gets. By integrating WaveletPool, CGA, and SOEP modules,
the model strengthens feature extraction, contextual model-
ing, and multi-scale fusion. Experiments on the CrowdHu-
man dataset demonstrate that our improved model achieves
increases of 1.6%, 2.1%, and 2.7% in Precision, Recall,
and mAP50-95, respectively, showing superior robustness
in small object and edge-blurred scenarios.These results
highlight the model’s robustness in detecting small and edge-
blurred objects. Beyond performance, the proposed architec-
ture offers strong adaptability to broader vision tasks, in-
cluding instance segmentation, pose estimation, and medical
imaging. Nevertheless, challenges such as increased training
time, higher resource consumption, and decreased accuracy
under extreme occlusion persist. Future work will aim to
improve efficiency, explore more advanced fusion techniques
(e.g., deformable attention), and enhance detection granular-
ity through refined region proposal mechanisms or targeted
data augmentation strategies.
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