
 

  

Abstract—For a class of strict feedback nonlinear systems 

with prescribed performance control, a control method based 

on an asymmetric prescribed performance function is proposed. 

Traditional prescribed performance functions with symmetric 

structures generate constraint intervals that are excessively 

wide during the initial control phase, failing to effectively 

regulate the fluctuations of tracking errors. To address this 

problem, a novel prescribed performance function with an 

asymmetric structure and strip shaped constrained space is 

introduced. Based on this performance function and the 

backstepping method integrated with dynamic surface control, 

a novel prescribed performance controller is designed. The 

stability of the closed loop system is analyzed via the Lyapunov 

stability criterion, and the effectiveness of the proposed 

algorithm is validated through simulations. Compared with 

existing approaches, the designed controller ensures that the 

initial value of tracking error falls within the constraint range 

specified by the prescribed performance function, reduces 

tracking error fluctuations, improves the transient 

performance of the system, and guarantees that the tracking 

error converges to a small neighborhood of the equilibrium 

point within any predefined time.   

 
Index Terms—Prescribed performance control, asymmetric, 

dynamic surface control, strictly feedback. 

I. INTRODUCTION 

rescribed performance control (PPC) can ensure both 

transient and steady state performance of the system, 

therefore, PPC has attracted the attention of researchers since 

its proposal [1, 2]. 

In [3], Y. B. Jiang et al. proposed a novel distributed fault 

tolerant controller to address the finite time consensus 

problem for multiple Lagrangian systems with actuator faults 

and prescribed performance. This controller not only ensures 

the steady state performance of the system but also 

guarantees its transient performance. The controller enables 

the errors to converge to a small neighborhood near the 

equilibrium point within a finite time while maintaining them 
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within the prescribed performance bounds throughout the 

process. J. Wu et al. investigated adaptive optimal fuzzy 

control for uncertain nonlinear systems with prescribed 

tracking accuracy. Compared with existing optimal 

backstepping control methods, the proposed approach 

constructs the target controller utilizing two Cn class 

functions, which ensures that the tracking error converges to 

a prespecified bounded range in [4]. 

When the prescribed performance function is a constant, it 

can indeed constrain the output, but the lack for decay 

property limits its applicability to some extent. To address 

this issue, researchers have proposed prescribed performance 

functions with monotonically decaying forms and designed 

prescribed performance controllers based on these functions. 

The designed controllers not only ensure the steady state 

performance of the system but also enhance its transient 

performance. 

In [5], Y. S. Hu et al. investigated the practical predefined 

time fault tolerant control (FTC) problem for uncertain Euler 

Lagrange systems subject to input saturation and 

performance constraints. By employing error transformation 

techniques and velocity functions, the proposed approach 

guarantees that the tracking error converges within a 

predefined time while maintaining its overshoot within 

prescribed performance bounds. To ensure the safety and 

stability of unmanned surface vehicles during navigation, 

performance constraints were imposed on the path following 

control system, significantly enhancing the transient 

performance of the controller in [6]. Y. N. Yang et al. 

proposed a novel prescribed performance synchronous 

control scheme for a class of mobile manipulator 

teleoperation systems with time varying delays and 

nonholonomic constraints in [7]. In [8], X. Li et al. developed 

a novel prescribed performance controller for maximum 

power point tracking control in wind power generation 

systems. This technology allows for the setting of 

convergence speed and tracking accuracy. D. G. Chu et al. 

proposed a prescribed performance adaptive neural network 

control method based on funnel control for a single link 

robotic arm system with quantized input. Unlike traditional 

funnel control schemes, this method constructs a novel 

performance function to ensure that the system achieves 

predefined performance metrics within a predetermined time 

in [9]. In [10], Y. L. Huang et al. addressed the prescribed 

performance tracking control problem for intelligent vehicle 

steering systems with inherent model nonlinearities and 

parametric uncertainties. It developed a novel prescribed 

performance controller for steer by wire systems by 

innovatively integrating barrier Lyapunov function 

techniques. 

With the development of prescribed performance functions, 
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exponential type prescribed performance functions have 

gradually gained widespread application in various fields 

such as state constraints, tracking, and spacecraft position 

and attitude adjustment. In [11], K. X. Lu et al. investigated 

the adaptive neural network based prescribed performance 

tracking control problem for the non-strict feedback time 

delay systems subject with full state constraints. X. N. Xia et 

al. developed a hyperbolic tangent function based prescribed 

performance tracking control scheme for a class of non-strict 

feedback nonlinear systems with input time delays and 

dynamic uncertainties in [12]. In [13], G. Q. Duan et al. 

developed an adaptive prescribed performance controller 

based on the fully actuated system approach for the attitude 

and position control of composite spacecraft formations. X. L. 

Zhang et al. developed a fixed time control method based on 

variable exponential coefficients to enhance both transient 

and steady state performance of exoskeleton systems in [14]. 

To further reduce the constraint space determined by the 

prescribed performance function. Based on the barrier 

Lyapunov function (BLF) with transformed errors and the 

finite time prescribed performance function (FTPPF) with 

arbitrarily setting time, a backstepping based attitude 

controller was derived, ensuring both transient and steady 

state performance in [15]. F. Liu et al. proposed a fixed time 

prescribed performance adaptive control method to address 

the multivariable robust control problem in turbofan engines. 

Literature [16] introduced a fixed time prescribed 

performance function (FTPPF) to strictly guarantee both 

transient performance and steady state accuracy of the 

control system. In [17], L. P. Xin et al. proposed an adaptive 

fuzzy backstepping control method based on dynamic surface 

control for the system of cascaded continuous stirred tank 

reactors. The proposed controller ensures the internal 

stability of the closed loop system and allows the output 

signals to asymptotically track their desired signals. In [18], 

G. Luo et al. addressed the problem of autonomous vehicles 

subject to time varying external disturbances and uncertain 

nonlinearities, developed a prescribed performance function 

(PPF) with fixed time convergence properties to construct a 

feedback controller. A. Q. Wang addressed the trajectory 

tracking problem for quadrotor UAVs in the presence of 

modeling errors and external disturbances. A dual loop 

control system was designed, where the outer position loop 

employs a prescribed performance adaptive PID algorithm 

[19].  

To impose different constraints on the upper and lower 

bounds of the tracking error, researchers have further 

proposed dual function type prescribed performance 

functions. These functions allow independent control over 

the upper and lower bounds of the tracking error, providing 

greater flexibility. It is particularly beneficial in applications 

where asymmetric error constraints are required, such as in 

CCSTR, robotics, aerospace systems and so on. In [20], H. X. 

Ma et al. proposed a dual function prescribed performance 

function by integrating conventional prescribed performance 

techniques with boundary protection algorithms. However, 

this performance function exhibits two main limitations: it 

cannot guarantee finite time convergence of tracking errors, 

and still uses a symmetric structural constraint. Z. Y. Gao et 

al. developed a finite time dual performance constraint 

function to construct the prescribed performance controller, 

which achieves two significant improvements: effective 

reduction of constraint space, and enhanced control 

performance in [21]. 

Whether it is the constant type prescribed performance 

function [3, 4], the monotonically decaying performance 

constraint function [5, 6, 13, 14], the improved 

monotonically decaying performance constraint function [18, 

19], or the dual function type prescribed performance 

function [20, 21], all of them can achieve the goal of 

improving the transient performance of the system while 

ensuring its steady state performance. However, the 

prescribed performance functions still have the following 

shortcomings: Firstly, the constraint space formed by these 

prescribed performance functions in the initial stage is 

relatively large, failing to effectively control the fluctuations 

of the system's tracking error. Secondly, the above prescribed 

performance control methods all require the assumption that 

the initial value of the tracking error is within the constraint 

range; otherwise, it may cause system instability.  

To further improve the transient performance of strict 

feedback nonlinear systems and reduce the fluctuations of 

tracking errors during the initial phase of control, this paper 

proposes an asymmetric prescribed performance function 

(APPF) and designs an asymmetric prescribed performance 

controller (APPC) by combining dynamic surface control and 

the backstepping method. Compared with existing research, 

the contributions of this paper are as follows: 

(1) The proposed asymmetric prescribed performance 

function is composed of two different constraint functions, 

where one function serves as the upper bound of the 

constraint space, and the other serves as the lower bound. 

Unlike the traditional prescribed performance functions in 

[11, 12], whose constraint space are constructed adopting the 

original constraint function and its opposite function, this 

paper uses two distinct prescribed functions to form the 

constraint space. This approach results in a more flexible 

constraint space, smaller tracking error fluctuations, and 

faster convergence speed. 

(2) The proposed asymmetric prescribed performance 

function considers the influence of the initial tracking error 

and incorporates it as a parameter of the prescribed 

performance function. This ensures that the initial value of 

tracking error falls within the constraint range, thereby 

eliminating the assumption in traditional prescribed 

performance control that the initial value of tracking error 

must already lie within the constraint range. 

(3) Other than prescribed performance functions in [11, 13, 

16] which are asymptotic convergence and whose 

convergence time are theoretically infinite, the prescribed 

performance function proposed in this paper can achieve 

convergence in finite time and owns a faster convergence 

speed.  

(4) Rather than commanded filtering technique used in 

[23], the first-order dynamic surface technique [22] is used to 

estimate the derivative of the virtual control signal, which 

solve the “differential explosion” problem in backstepping 

method and reduce the computational complexity at the same 

time. 

 

II. PROBLEM FORMULATION PRELIMINARIES 

Consider the following strict feedback nonlinear system. 

where ( ) ( 1,2,..., )
i
x t i n , ( )u t , ( )y t  being 

system state variables, input variables, and output variables 

respectively; ( )
i
f and ( )

i
g  being known smooth functions, 
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() 0
i
g , T

1 2
( ) [ ( ), ( ),..., ( )]
i i
x t x t x t x t . For the 

convenience, all time variables t  is omitted below. 

1 1 1 1 1 2

1

1

( ) ( ( )) ( ( )) ( ),

( ) ( ( )) ( ( )) ( ),

( ) ( ( )) ( ( )) ( ),

,

i i i i i i

n n n n n

x t f x t g x t x t

x t f x t g x t x t

x t f x t g x t u t

y x

                 (1) 

Assumption 1 [24]: The desired signal is continuous, 

bounded, and n orders differentiable. 

The control objectives of this paper are as follows: 

For a class of strict feedback nonlinear systems (1), based 

on the proposed finite time asymmetric prescribed 

performance function, an asymmetric prescribed 

performance controller is designed to achieve the following 

goals: 

(1) The system output can track the desired signal within a 

finite time, and the closed loop system is uniformly bounded 

and stable. The tracking error of the system converges to a 

small neighborhood near the equilibrium point. 

(2) The tracking error of the system satisfies the transient 

and steady performance predefined by the asymmetric 

prescribed performance function. 

Lemma 1 (Lyapunov Stability [17]): Consider a 

nonlinear system ( ) ( ( ))x t f x t , where ( )x t  representing 

the state, ()f  representing nonlinear smooth functions, if 

there exists a positive definite continuous function ( ( ))V x t  

satisfying the following inequality: 

( ( )) ,V x t aV b                           (2) 

where 0a  and 0b , then the system is uniformly 

ultimately bounded stable. 

Lemma 2 [25]: For 
1 1
,z z R , there exists 

22
1

2 2 2 2

1 1

log( ) .
z

z z
                         (3) 

Lemma 3 [26][27]: For ,a b R , 0
i
L , there exists 

2
2 2

2

1
.

22
i

i

L
ab a b

L
                         (4) 

To achieve control objective (2), the tracking error is 

constrained as follows: 

( ) ( ) ( ), 0,b t e t a t t                           (5) 

where ( ) ( ) ( )
r

e t y t y t , ( )y t  and ( )
r
y t are the output and 

the desired signal of the system. 

0
e  is the initial value of the tracking error；

0
0a  and 

0
0b are design parameters representing the deviation 

degree of the upper and lower bounds of the constraint space 

from the initial tracking error at the initial time, respectively. 

0a  and 0b  are design parameters representing the 

upper and lower bounds of the steady state tracking error of 

the system, respectively, 
0
a a  and 

0
b b . 

From (6) and (7), it can be seen that the prescribed 

performance function proposed in this paper differs from 

those in [11,12]. It introduces the initial value of tracking 

error 
0
e  in the proposed prescribed function ensuring that the 

initial value of the tracking error falls within the constraint 

space. This effectively overcomes the assumption in 

traditional prescribed performance control that the initial 

value of tracking error must lie in the constraint space, 

facilitates practical application of prescribed performance. 

1

0 0
1 ,

( ) 0 ,

, ,

n
t

e a a a
T

a t t T

a t T     (6) 

1

0 0
1 ,

( ) 0 ,

, ,

n
t

e b b b
T

b t t T

b t T

   

   (7) 

Depending on the relative magnitudes of 
0
e ,

0
a a  and 

0
b b , the following four types of constraint spaces may 

be formed: 

Case 1: An asymmetric strip shaped constraint space. 

When 
0 0
[ , )e b b , the constraint space formed by 

(6) and (7) is shown in Fig. 1. As can be seen from Fig. 1, this 

constraint space has an asymmetric structure, which is 

different from the symmetric structure in [11, 12] formed by 

the original performance function and its form of opposite 

function.  

The asymmetric strip shaped constraint space proposed in 

this paper is composed of two different constraint functions, 

where ( )a t  serves as the upper boundary of the constraint 

space, ( )b t  serves as the lower boundary. The initial values 

of the constraint functions ( )a t  and ( )b t  are both greater than 

or equal to 0 and lie on the upper side of b . The initial 

range of the constraint space is 
0 0 0 0
[ , ]e b e a  to ensure 

the initial value of the tracking error 
0
e  falls within the 

constraint range. 

Case 2: An approximately symmetric trumpet shaped 

constraint space. 

When 
0 0
[0, )e b b , the constraint space formed by (6) 

and (7) is shown in Fig. 2. From Fig. 2, the constraint space 

has an approximately symmetric structure. 

Where ( )a t  and ( )b t  serve as the upper and lower 

boundaries of the constraint space, respectively, and the 

initial range of the constraint space is 
0 0 0 0
[ , ]e b e a . The 

constraint space is similar to the traditional prescribed 

performance function [11,12], both exhibiting an 

approximately symmetric structure. 

However, it is worth noting that by introducing the initial 

value of the tracking error
0
e in the prescribed performance 

function, it is ensured that the system's initial value of the 

tracking error falls within the constraint space. This 

eliminates the assumption in traditional prescribed 

performance control that initial value of the tracking error 

must lie in the constraint space. 
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Fig. 1.  Asymmetric constraints for case 1 

 

 
Fig. 2.  Approximately symmetric constraints for case 2 

 

Case 3: An asymmetric strip shaped constraint space 

When （ ，
0 0

( )]e a a , the constraint space 

formed by (6) and (7) is shown in Fig. 3. This constraint 

space is similar to case 1, featuring an asymmetric strip   

shaped constraint space, where ( )a t  and ( )b t  serve as the 

upper and lower boundaries of the constraint space, 

respectively. The difference lies in the initial range of the 

constraint space, being 
0 0 0 0
[ , ]e b e a and lying on the 

negative half axis of y  axis. 

Case 4: An approximately symmetric trumpet shaped 

constraint space. 

When
0 0
[ ( ),0)e a a , the constraint space formed 

by (6) and (7) is shown in Fig. 4. This constraint space is 

similar to case 2, exhibiting an approximately symmetric 

structure. Where ( )a t  and ( )b t serve as the upper and lower 

boundaries of the constraint space, respectively. Similarly, it 

ensures that the initial value of the tracking error falls within 

the constraint space. 

Remark 1: Depending on the initial value of the tracking 

error 
0
e  and the design parameters (

0 0
, , ,a a b b ), four 

different constraint spaces can be formed. The constraint 

spaces in case 2 and case 4 are approximately symmetric 

trumpet shaped, similar to traditional prescribed performance 

functions, with a larger range of variation during the initial 

phase. In contrast, the constraint spaces in case 1 and case 3 

are asymmetric strip shaped constraint spaces with a 

relatively smaller variation in the initial phase, which is more 

conducive to reducing the fluctuations of the tracking error, 

decreasing the overshoot, raising transient performance. 

Remark 2: Since the prescribed performance function in 

this paper considers the initial value of the tracking error, it 

ensures that the initial value of the tracking error falls within 

the constraint space, eliminating the assumption that initial 

value of the tracking error must lie in the constraint space. 

 
Fig. 3.  Asymmetric constraints for case 3 

 

 
Fig. 4.  Approximately symmetric constraints for case 4 

 

Remark 3: The prescribed performance function used in 

this paper ensures that the system reaches a stable state within 

a finite time T , and the steady state error lies within the 

interval ( , )b a . 

 

III. CONTROLLER DESIGN 

A. Prescribed Performance 

Combined with the backstepping method, barrier 

Lyapunov function, and dynamic surface control, an 

asymmetric prescribed performance controller is designed 

for system (1) in this section. 

To facilitate the use of obstacle Lyapunov functions to 

prove the stability of the system, the following coordinate 

transformation is introduced. 

1
( ) 2 ( ) ( ) ( ).z t e t a t b t                     (8) 

Substituting (8) into (5), we obtain 

1
( ) ( ) ( ),t z t t                          (9) 

where ( ) ( ) ( )t a t b t , the constraints on the tracking 

error in (5) and (9) are equivalent. In the following, (9) will 

be used to design the prescribed performance controller. 

The controller design process can be divided into n steps, 

and the following coordinate transformations are used. 

, 2,..., .
i i i
e x i n                (10) 

where 
i

is the output of the virtual control law 
1i
 after 

passing through a low pass filter, and the filtering error is 

defined as  

1
, 2,..., .

i i i
m i n                (11) 

The low pass filter used in this paper is shown in (12) [28]. 

   
1

1

,

(0) (0), 2,... ,
i i i i

i i
i n

              (12) 
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where 
1i
 and 

i
 are the input and output signals of the 

filter respectively, and 0
i

 is design parameter. 

B.  Virtual Control Design 

Step 1： 

Taking the derivative of (8) and substituting (1), and 

1 r
e y y , we obtain 

1 1 1 2
2( ) .

r
z f g x y a b                 (13) 

From (6) and (7), we can obtain 

0 0

1
( )( 1)(1 ) ( ),nta e a a n

T T
        (14) 

0 0

1
( )( 1)(1 ) ( ).ntb e b b n

T T
         (15) 

Let 

1 1 1
,

e m
V V V                                      (16) 

where 

2

1 2 2

1

1
ln
2e

V
z

 and 
2

1 2

1

2m
V m . 

The time derivative of 
1e
V  can be written as 

2 2 2

1 1 1
1 2 2 2

1

2

1 1 1

( ) ( )1
[ ]

( )

[ ],

e

z z z
V

z

Q z z z

       (17) 

where 2 2

1
1/( )Q z . 

Substituting (10), (11) and (13) into (17) yields 

1 1 1 1 1

2

1 1 2 2 1

(2( ) )

2 ( ) .

e r
V Qz f g y a b

Q
Qz g e m z

          (18) 

Based on Lemma 3, the following inequalities hold: 
2 2 2 2

1 1 2 1 1 2
2 ,Qg z e Q g z e                       (19) 

2 2 2 2

1 1 2 1 1 2
2 .Qg z m Q g z m                     (20) 

Substituting (19) and (20) into (18) yields 

1 1 1 11

2 2 2

1 1 1 1 2 2

(2( ) )

(2 ) .

r
V f g y a bQz

Qz Qz g z e m
          (21) 

The virtual control law is set as 

1 1

1

2

1 1 1 1 1

1

1
( 2 2 )

2
1
( 2 ),

2

r
f y a b

g

k z z Qz g
g

            (22) 

where
1
0k  is a positive design parameter. 

Substituting (22) into (21) yields 
2 2 2

1 1 1 2 2
.

e
V kQz e m                   (23) 

The time derivative of 
1m

V  is 

1 2 2
.

m
V m m                                   (24) 

From (11) and (12), through simple derivation, we can 

obtain 

2
2 1

2

.
m

m                                  (25) 

Substituting (25) into (24) yields 
2

2
1 2 1

2

.
m

m
V m                         (26) 

Assume 
1 11

| | ( , , , , , )
r r

z a b y y , where 
1

 is continuous 

function. For simplicity, abbreviate 
11
( , , , , , )

r r
z a b y y as 

1
. 

By Lemma 3, we can know 
2

2 1
2 1 2

.
4

m m                     (27) 

Substituting (27) into (26), it can be obtained 
2 2

22 1
1 2

2

,
4m

m
V m                   (28) 

where
2

1
0

2
. 

Furthermore, from (16), (23) and (28), it yields 

1 1 1
2

2 2 2 1
1 1 2 2

2
2 2

2 21 1
1 2 22 2

21

1
( 2)

4

1
( 2) .

4

e m
V V V

kQz m e

z
k m e

z

    (29) 

By Lemma 2, (29) can be rewritten as:  
2

21
1 1 22 2

21
2

2 1
2

2
21

1 1 2

1
ln ( 2)

4

,
4

z
V k m

z

e

aV e

        （30） 

where 
1 1 2
min{2 ,2(1 1)}a k , 

2
0 1/ 2 , 

2
 is 

a design parameter. 

Step i：（2 1i n ） 

Let 

1 , 1

2 2

1 1

1 1
,

2 2

i i ei m i

i i i

V V V V

V e m
                      (31) 

where 

21 ,
2ei i

V e                                 (32) 

2

, 1 1

1
.

2m i i
V m                             (33) 

From (1), (10), and (11), it yields 

1 1
( ) .i

i i i i i i

i

m
e f g e m           (34) 

Substituting (34) for (32) yields 

1 1
( ).

ei i i

i
i i i i i i i i

i

V ee

m
e f g e g m g

   (35) 

By Lemma 3, it can be inferred that 
2 2

2

1 1
,

4
i i

i i i i

e g
g e e e                                 (36) 
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2 2
2

1 1
.

4
i i

i i i i

e g
g e m m                               (37) 

Substituting (36) and (37) into (35) yields 
2

2 2

1 1

( )
2

.

i i i
ei i i i i

i

i i

m g e
V e f g

e m

                    (38) 

The virtual control law is set as 
2

1
( ).

2
i i i

i i i i i

i i

m g e
k e f e

g
          (39) 

Substituting (39) into (38) yields 

2 2 2 2

1 1
,

ei i i i i i
V ke e e m                (40) 

where 0
i
k . 

Next, we proceed to handle 
, 1m i

V . Taking the first 

derivative of (33) and assume | | ( ),
i i i i

e m  where 

( ),
i i i
e m  is continuous function. Applying the method 

similar to Step 1, it can be obtained that 

, 1 1 1
2 2

21
1

1

,
4

m i i i

i i
i

i

V m m

m
m

                     (41) 

where ( ),
i i i
e m   is abbreviated as 

i
. 

Taking the derivative of (31) and substituting (40) and (41) 

1

2

2

1 , 1
2 21

1 1 1

2

14
1

2

14
1

( 2)

,

i

j

j

i i ei m i

i i i i i

i

i
j

i

i i i
j

V V V V

a V k e m

e

aV e

        
(42) 

where
1 1

min{ , 2 , 2(1 2)}
i i i i
a a k , 

1
0 1/2

i
 

is a design parameter. 

Step n: 

Let 

2

1

1
.

2n n n
V V e                             (43) 

By taking the first derivative of (43), it yields 

1
.

n n n n
V V e e                                (44) 

From (1), (10), and (11), we obtain 

.n
n n n

n

m
e f g u                        (45) 

Substituting (45) for (44) yields 

1
( ).n

n n n n n

n

m
V V e f g u               (46) 

The actual control law is set as 

1
( ).n

n n n n

n n

m
u k e f e
g

            (47) 

Substituting (43) and (47) into (46) yields 

21

1 1 4
1

min
,

i

n

n n n n n
i

n

V a V k e

a V b
                 (48) 

where 
min 1

min{ ,2 }
n n

a a k , 
21

4
1

i

n

i

b . 

From Lemma 1, the following theorem can be derived. 

Theorem 1: Under the condition that assumption 1 is 

satisfied, when the virtual control laws are given by (22) and 

(39), and the actual control law is given by (47), by 

appropriately selecting 0 ( 1,2, , )
i
k i n  and 

1
0 1/2

i
（ 1,2, , 1i n ） , the closed loop 

system (1) is uniformly ultimately bounded stable at the 

origin. Furthermore, the system satisfies the performance 

requirements predefined by (5). 

 

IV. SIMULATION RESULTS 

To justify the effectiveness of the asymmetric prescribed 

performance controller designed in this paper, the following 

second order system is selected: 

1 1 1 2

2 2 2

,

,

x f g x

x f g u
                           (49) 

where
2

1 1
1f x , 

2

2 2
1f x , 2

1 1
+1g = x , 

2

2 2
1g x , = sin( )+ cos(0.5 )

r
y At A At , and 1A . 

A. Performance Simulation Analysis of Asymmetric 

Prescribed Performance Control 

To demonstrate the impact of the initial value of the 

tracking error and the parameters of the prescribed 

performance function on the controller, simulations are 

conducted for the four possible cases mentioned earlier. The 

specific details are as follows: 

Case 1: 
0 0
[ , )e b b , 

Case 2: 
0 0
[0, )e b b , 

Case 3: （ ，
0 0

( )]e a a , 

Case 4: 
0 0
[ ( ),0)e a a . 

The initial value of the tracking error for case 1 and case 2 

are greater than 0 （
0
0e ）, while the initial value of the 

tracking error for case 3 and case 4 are less than 0 （
0
0e ）. 

The simulation duration is set to 6s, with design parameters, 

1 2
10k k , the filter parameter 

12
0.2 , and initial 

value of the filter 
1
(0) 3 . Other parameters required for 

the simulation are listed in Table I. The simulation time is 

uniformly set to 6s. 
TABLE I 

PARAMETER SETTING 

Type of 

Situation 
Parameter Settings 

Case 1 0
2e , 

0
0.5b , 0.08b , 

0
3a , 0.08a .  

Case 2 0
0.2e , 

0
3b , 0.08b , 

0
3a , 0.08a . 

Case 3 0
4e ,

0
3a , 0.08a , 

0
0.5b , 0.08b . 

Case 4 0
2e ,

0
3a , 0.08a , 

0
0.5b , 0.08b . 
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(a)  Simulation of case 1: asymmetric constraints. 

 

 

(b)  Simulation of case 2: approximately symmetric constraints. 

 

 
(c)  Simulation of case 3: asymmetric constraints. 

 

The variation curve of system tracking error 
1
( )e t  over 

time is shown in Fig. 5. For clarity, both the upper bound a 

and lower bound b of the asymmetric prescribed performance 

function are provided in the simulation. As shown in Fig. 5, 

the controller designed in this paper has achieved good 

control effects, ensuring that the tracking error of the system 

converges quickly and remains within the constraint range 

formed by the prescribed performance function. 

From Fig. 5, when different control parameters are 

selected, the prescribed performance function can form four 

different types of constraint spaces: the asymmetric strip 

shaped constraint space shown in Fig. 5(a) and Fig. 5(c), and 

the approximately symmetric trumpet shaped constraint 

space shown in Fig. 5(b) and Fig. 5(d).  

 

(d)  Simulation of case 4: approximately symmetric constraints. 

Fig. 5.  Constraint curves of the APPC 
 

 
Fig. 6.  Tracking error. 

 

 
Fig. 7.  Output signals of the controllers. 

 

The range of the strip shaped constraint space is 

significantly smaller than that of the trumpet shaped 

constraint space. Therefore, with approximately the same 

settling time, the strip shaped constraint space has a smaller 

constraint range and the tracking error changes more 

smoothly. 

B.  Comparison with Traditional Prescribed Performance 

Control 

To justify the effectiveness of the asked algorithm, 

simulations were also conducted for the prescribed 

performance controller (PPC) [11, 12] and the finite time 

controller without prescribed performance (NPPC) [29], the 

model was adopted by (49).  
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Fig. 8.  State variable x2. 

 

 
Fig. 9.  Time varying curves of the tracking error. 

 

 

Fig. 10.  Output signals of the controllers. 

 

Both cases where the initial value of the tracking error was 

greater than 0 and less than 0 were considered. To verify the 

performance of the proposed APPC controller when the 

initial value of the tracking error is greater than 0, the initial 

states of system are chosen as 
1
(0) 3x , 

2
(0) 3x , the 

initial tracking error is 2. Other parameters used in the 

simulation are listed in Table Ⅱ. Fig. 6 shows the time 

varying curves of the tracking error. For clarity, the upper and 

lower bounds of the constraint spaces for both APPC and 

PPC are also provided in Fig. 6, where a, b and −a represents 

the bound of the constraint space for both APPC and PPC, 

respectively.  

 

Fig. 11.  Time varying curves of the state variable x2. 

 

 
Fig. 12.  Tracking curve. 

 

 
Fig. 13.  Tracking error. 

 
TABLE Ⅱ 

SIMULATION PARAMERTES 

Algorithm Constraint Parameters 
Filter 

Parameters 
Scale 
Factor 

APPC 
0
3a , 0.08a , 

0
0.5b , 0.08b . 

12
3 , 

12
0.2 . 

1
5k , 

2
5k . 

PPC 0
3a , 0.08a . 

22
3 , 

22
0.5 . 

1
5c , 

2
5c . 

NPPC / 
32

3 , 

32
0.5 . 

1
5K , 

2
5K . 
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Fig. 14.  State variable x2. 
 

 
Fig. 15.  Output signals of controllers. 

 

Both the APPC and PPC controllers exhibit significantly 

lower settling times and overshoot compared to the NPPC 

controller. This is primarily because the prescribed 

performance control in APPC and PPC predefines the 

convergence speed and variation range of the tracking error, 

thereby improving the transient performance. 

Compared to the PPC controller, the APPC controller not 

only has a smaller settling time and overshoot but also 

exhibits smaller fluctuations in transient process. This is 

mainly due to the predefined asymmetric strip shaped 

constraint space imposing stronger constraints on the 

tracking error, further enhancing the transient performance. 

Fig. 7 shows the output variation curves of the three 

aforementioned controllers.  

From Fig. 7, the APPC control signal exhibits fast 

convergence speed, with particularly small fluctuations in the 

later stage. Time varying curves of the state variable 
2
x  for 

the three controllers mentioned above are shown in Fig. 8. It 

can be seen that the state variable 
2
x  is bounded and 

physically realizable. 

To verify the effectiveness of the proposed APPC 

controller when the initial value of the tracking error is less 

than 0, the initial states of system are chosen as 

1 2
(0) [ (0), (0)] 3, 3Tx x x  with the initial tracking 

error being -4. Other parameters are the same as those in 

Table Ⅱ. Fig. 9 shows the error tracking curves for the APPC, 

PPC, and NPPC controllers. Fig. 10 presents the output 

signals of the three controllers mentioned above. Fig. 11 

displays the time varying curves of the state variable 
2
x . 

 
Fig. 16.  Tracking curve. 

 

 
Fig. 17.  Tracking error. 

 

Fig. 9-11, conclusions like those in the previous section 

can be drawn, the APPC exhibits the smallest fluctuations 

and overshoot in transient process, demonstrating the best 

transient performance. It ensures that the closed loop system 

tracking error remains within the predefined asymmetric strip 

shaped constraint space and converges to a small 

neighborhood near the origin within the finite time T.   
 

V. PRACTICAL APPLICATION 

To verify the effectiveness of the proposed method, the 

designed controller is applied to the rigid robotic arm system 

described in [30], whose dynamic model as follows: 

1 2

2 2 2

,

,

x x

x f g u
                                (50) 

where 
1
x , 

2
x  and u  are the angular position, angular 

velocity and input torque of the robotic arm respectively, 

2 1 0
cos( ) /

r v r
f m g l x J , 

2 0
1/g J , inertial coefficient 

2

0
4 / 3

r r
J m l , load mass 5

r
m kg , gravitational 

acceleration 
29.8 /

v
g m s , length of the robotic arm 

0.25
r
l m . 

A. The Initial Value of Tracking Error Is Greater Than 0 

We first consider the case where the initial error is greater 

than 0. Let 
1
(0) 3x , 

2
(0) 3,x  and the initial tracking 

error is 2. The other parameters in the simulation are shown 

in Table Ⅲ. The simulation time is uniformly set to 6s. 
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Fig. 18.  Time varying curves of the state variable x2. 

 

 
Fig. 19.  Output signals of controllers. 

 

The simulation results are shown in Fig. 12 to Fig. 15. Fig. 

12 displays the tracking trajectory of the robotic arm system, 

while Fig. 13 illustrates the corresponding tracking error 

curves. Key observations from Fig. 13 include: All three 

controllers (APPC, PPC, and NPPC) successfully drive the 

tracking error to converge within a small neighborhood of the 

origin. The APPC controller demonstrates superior transient 

performance, exhibiting minimal oscillation (zero overshoot) 

and the fastest convergence (settling time of 2.02s), 

significantly outperforming both the PPC controller (1.02rad 

overshoot, 2.86s settling time) and NPPC controller (1.56rad 

overshoot, 3.02s settling time). Regarding steady-state error, 

the APPC controller (0.02rad) shows 23% and 38% 

improvement over the PPC (0.026rad) and NPPC (0.032rad) 

controllers respectively. This performance advantage can be 

attributed to the asymmetric prescribed performance function 

employed in the APPC controller, which features more 

precise constraint space and finite-time convergence 

properties. Fig. 14 shows the curves of the robotic arm's 

angular velocity x2. As can be seen from Fig. 14, the state x2 is 

bounded. Fig. 15 presents the curves of the control input u. 

From Fig. 15, it is evident that the control signal meets 

practical requirements. The analysis shows that the APPC 

algorithm proposed in the paper has obvious advantages over 

the traditional PPC algorithm. 

B. The Initial Value of Tracking Error Is Less Than 0 

We consider the case where the initial error is less than 0 in 

this section. Let 
1
(0) 3x , 

2
(0) 3x , the initial value of 

the tracking error is selected as -4. Other parameters are the 

same as those in Table Ⅲ. The simulation time is uniformly 

set to 6s.  

TABLE Ⅲ 
SIMULATION PARAMERTES 

Algorithm Constraint Parameters 
Filter 

Parameters 

Scale 

Factor 

APPC 
0
3a ， 0.08a . 

0
0.5b , 0.08b . 

12
3 , 

12
0.2 . 

1
100k , 

2
100k . 

PPC 0
3a , 0.08a . 

22
3 , 

22
0.5 . 

1
12c , 

2
8c . 

NPPC / 
32

3 , 

32
0.5 . 

1
50K , 

2
50K . 

 

The simulation results are shown in Fig. 16 to Fig. 19, Fig. 

16 presents tracking curve of the robotic arm system. Fig. 17 

presents tracking error curves, Fig. 18 shows the curves of the 

robotic arm's angular velocity x2, and Fig. 19 presents the 

curves of the control input u. 

Similar conclusions to the previous section can be drawn 

from Fig. 16-Fig. 19. The APPC controller has not only 

excellent transient characteristics but also excellent steady 

state characteristics. In the transient process, APPC controller 

has the smallest fluctuation and no overshoot. APPC 

controller and PPC controller have almost the same setting 

time, but both are significantly smaller than that of NPPC. 

After entering the steady state process, the fluctuation of 

APPC control is also smaller than PPC controller and NPPC 

controller. 
 

VI. CONSIDERATION 

The paper investigates the issue of asymmetric prescribed 

performance constraints for a class of strict feedback 

nonlinear systems. A finite time prescribed performance 

function with an asymmetric structure in a strip shaped 

constraint space is proposed, and a controller is designed 

based on this prescribed performance function to address the 

issue of large tracking error fluctuations caused by the 

expansive constraint space of traditional prescribed 

performance controllers. By treating the initial value of the 

tracking error as a parameter of the prescribed performance 

function, the paper ensures that the initial value of the 

tracking error can fall within the constraint range, thereby 

broadening the applicability of prescribed performance 

control. The designed controller guarantees that the tracking 

error of the strict feedback nonlinear system converges to a 

small neighborhood near the coordinate origin in finite time, 

and all signals in the closed loop system are bounded. 

Simulation results validate the effectiveness of the proposed 

control scheme. Future research will further explore and 

paper the integration of sliding mode control in [31, 32]. The 

sliding mode control has strong robustness, and the sliding 

mode control is further combined with the prescribed 

performance control to improve the system ability to resist 

interference, and is applied to more complex industrial 

application contexts. 
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