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Abstract—Resource allocation within management systems
is the strategic distribution of resources to enhance both
efficiency and productivity. This process must remain adaptable
to fluctuating demands, which helps reduce waste and idle time,
ultimately contributing to cost-effectiveness and profitability.
Given its complexity, effective allocation requires a nuanced
understanding of factors such as participant roles, behavioral
patterns, and strategic interactions. This study introduces a
novel allocation scheme that emphasizes both participants
and their activity behaviours. Grounded in the principle
of symmetric treatment, we propose several axiomatic and
dynamic analyzes to examine the logical foundation of this
scheme, utilizing reduction and variation functions. The
game-theoretical perspective presented here offers deeper
insights into participant strategy, supporting more effective and
equitable resource allocation.

Index Terms—Resource allocating, scheme, symmetry for
treatment, axiomatic and dynamic analysis.

I. INTRODUCTION

Game-theoretical approaches have become crucial
for analyzing complex interactions within real-world
management systems, particularly among participants
and coalitions, through rigorous mathematical formulations.
Resource management increasingly leverages techniques that
merge diverse theoretical frameworks to boost system-wide
effectiveness. By integrating insights from game theory,
both resource allocation schemes and strategic interaction
models can achieve greater precision and impact. Within
this context, axiomatic analysis defines an allocation scheme
using foundational logical principles, often capturing
ideas of rationality, fairness, or stability. This analysis is
considered complete when these axioms uniquely determine
a scheme. Conversely, dynamic analysis examines how a
scheme emerges and stabilizes through behavioral learning,
strategic adjustments, or convergence toward equilibrium.
A scheme that consistently appears as the stable outcome
of a reasonable dynamic process gains practical credibility.
In fact, some allocation rules can even be interpreted as
long-term negotiation equilibria. By combining axiomatic
and dynamic approaches, this study offers a dual validation
framework: one that clarifies logical soundness and another
that demonstrates adaptive feasibility under evolving
conditions.

The concept of symmetry is central to promoting both
fairness and operational efficiency in resource allocation
processes. Here, symmetry doesn’t just mean identical
treatment; it refers to an equitable approach that reflects
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each participant’s functional role and contribution. This
is particularly important in multi-choice environments
where individuals may participate at varying intensities or
engagement levels. In such contexts, dynamic allocation
mechanisms must preserve this symmetry, ensuring
adjustments are proportional to participants’ comparable
roles or contributions. When allocation systems are designed
with these principles in mind, they’re more likely to foster
cooperation, reduce disputes, and channel resources toward
outcomes that maximize collective value.

Under traditional game-theoretical studies of interaction
situations, a characteristic function is typically defined over
all sub-collections of the set of participators. This framework
implies that each participator is restricted to a binary
choice: either fully joining a coalition or not participating
at all. However, in practical resource allocating systems,
participators often demonstrate varying degrees of activity,
each of which can significantly influence the allocation
outcome. The concept of multi-choice interaction situations
therefore serves as a natural extension of traditional coalition
structures, accommodating diverse levels of engagement
among participators. Several symmetric schemes have been
developed within such multi-choice contexts. For instance,
Cheng et al. [4], Hwang and Liao [11], Liao [20], [21],
Nouweland et al. [30], and Wei et al. [36] have proposed
different schemes by applying symmetric concepts such
as the core, the equal allocation of non-separable costs
(EANSC), and the Shapley value.

This research centers on the pseudo equal allocation of
non-separable costs (PEANSC) defined by Hsieh and Liao
[9]. Within traditional coalition situations, Hsieh and Liao [9]
provided axiomatic and dynamic results demonstrating that
the PEANSC constitutes a symmetric and stabilizing scheme.
These findings naturally give rise to a compelling question
within the framework of multi-choice situations:

e Can existing axiomatic and dynamic results related
to the PEANSC be extended and enhanced under
multi-choice situations and within resource allocating
management contexts?

This study aims to address this question. The main
contributions are outlined as follows.

1) Inspired by the work of Hwang and Liao [13],
we propose a multi-choice generalization of
the PEANSC, termed the efficient individual
achieved-efficacy (EIAE), which simultaneously
accounts for participators and their activity behaviours,
as introduced in Section 2.

2) In Section 3, we introduce alternative properties of
symmetry and conformance, extending the framework
developed by Hsieh and Liao [9], to characterize the
EIAE under multi-choice conditions. The symmetry
property for treatment, as formulated in this study,
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captures the principle that participators with identical
marginal contributions should receive identical
allocations.

3) Symmetry, however, permeates more deeply into the
allocation process. In Section 4, we employ the
symmetric concept embedded in the variation function
to derive a dynamic result for the EIAE within
multi-choice contexts. The variation function, which
evaluates allocation stability, also reflects symmetry:
when participators’ contributions are structurally
mirrored, their ’dissatisfaction’” should correspondingly
align.

4) In Section 5, the game-theoretical results are applied to
examine a symmetric allocating scheme in the setting
of resource allocating management systems. Additional
insights and comparisons are presented in Section 6.

By embedding symmetry into the core of the proposed
model, this study not only advances fairness in resource
allocating but also improves overall efficiency. The sections
that follow explore how the EIAE scheme operationalizes
these symmetry principles, thereby contributing to both
theoretical understanding and practical strategies for resource
allocating.

II. THE EFFICIENT INDIVIDUAL ACHIEVED-EFFICACY

Let UZ be the universe of partic ipators. For m € uz
and b, € N, B, = {0,1,--- b} could be treated
as the activity behav1our collection of participator ¢ and
B =B, \ {0}, where 0 represents no participation. Let

m

7 CTUZ and B = [1,n.ez Bm be the product collection
of the activity behaviour collections of all participators of

Z. for each T C Z, we define T e B” is the vector with
Gh=1ifmeT, and L =0if m e Z\ T. Denote 05
the zero vector in RZ.

A multi-choice situation is a triple (Z,b, A), where
Z is a non-empty and finite collection of participators,
b= (b )mez is the vector that presents the highest activity

behaviour for each participator, and A:B 5 Risa
characteristic mapping with A(0) = 0 which assigns to

every X = (Xm)’m67 € B” the worth that the participators
can gain when every participator m participates at behaviour
Xm. As d € R is fixed throughout this research, we write
(Z,A) rather than (Z,b, A). B

Given a multi-choice situation (Z, A) and i € B, we
write J (/7 i) = {m € Z|fim # 0} and ji to be the restriction
of ji at T for each T C Z. Denote the family of total
multi-choice situations by MCS.

Given (Z,A) € MCS, let PZ = {(m,ky) | m €
7,k € P:;L} A scheme on MCS is a map 7) assigning to
every (Z,A) € MCCS an element

(7, A) = (it (Z,A))

c RP?

(m,km )EPZ

Here iy, 1, (Z, A) is the power index or the value of the
participator m if it participates with activity behaviour k,,
under situation A.

Subsequently, we provide a generalized analogue of
the pseudo equal allocation of non-separable costs under

multi-choice situations as follows.

Definition 1: The efficient individual achieved-efficacy
(EIAE) of multi-choice situations,i\Il,Ais the function on
MCS which associates to every (Z,A) € MCS, every

participator m € Z and every k,, € B,, the value
‘Ilm,km (77 A)
= b, ZA) + & [AG) - X 4,5, (Z.A)],
nez

where ), 5. (Z,A) = A(bm,OZ\{m}) - A(km _
1,07, (my) is the individual achieved-efficacy of the
participator m and its behaviour k,,.

III. AXIOMATIC RESULTS
A. Conformance property and related axiomatic analysis

In this section, we establish that a specific form of
reduction and an associated conformance property can be
used to characterize the EIAE.

Let 7 be a scheme on MCS.

o 7 fits scheme completeness (SCOM) if for each
(Z, A) e MCS, Y 7 Uy (Z,A) = A(b).
meZ
« 7) fits principle for two-person situations (PFTS) if

for each (Z A) € MCS with |Z| < 2, it holds that
W2z, A) \II(Z A)

The SCOM property is a widely accepted criterion in
resource allocation frameworks, ensuring that the total value
is fully allocated when all participators are fully engaged.
The PFTS property generalizes the two-person axiomatic
foundation originally proposed by Hart and Mas-Colell [8],
requiring that the scheme align with W in all cases involving
one or two agents. In the remainder of this section, we will
prove that EIAE satisfies both SCOM and PFTS.

Lemma 1: The EIAE fits SCOM.
Proof: Let (Z,A) € MCS. To verify that the scheme

W satisfies the Strong Collective Output Matching (SCOM)
condition, we compute:

Z m bm(Z A)

Thus, the total assigned values under N exactly recover the
total available output A (b), completing the proof. |
Lemma 2: The EIAE fits PFTS.
Proof: This follows directly from the definitions of the
EIAE and PFTS. The scheme W is constructed in a manner
consistent with the functional form prescribed by PFTS.

Hence, the result holds immediately. [ ]
A natural analogue of the reduction due to Hsieh and
Liao [9] on multi- ch01ce situations is as follows. Given

(Z,A) € MCS, § C Z and a scheme 7, the reduced
situation (S, A7) with respect to S and 7 is defined by

I

—5
for each i € B,

-
A2
0 i = 0g,
) Al 0g ) B2 a@i-1,
A(ﬁ,b7\§ - > g (Z,A) otherwise.
ez\s "
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The bilateral conformance property in resource allocation
can be described as follows: Consider a scheme 7) operating
within a situation MCS. For any pair of participators,
a “reduced situation” is defined by allocating the payoffs
prescribed by 7 to all other participators and considering the
remaining resources available to the pair. The scheme 7} is
deemed bilaterally consistent if, when applied to any such
reduced situation, it consistently yields the same payoffs for
the pair as in the original situation. Formally, a scheme 17 fits
bilateral conformance (BCFE) if for each (Z, A) € MCCS
with [Z| > 3, for each § C Z with |S| = 2 and for each
(my k) € A%, Tk, (Z, A) = T, (S, %)

Lemma 3: The EIAE ¥ fits BCFE.
Proof: Let (Z,A) € MCS with |Z| > 3 and 5§ =

{m,n} C Z. By the definition of W, for each (p, k,) € A5,

@, 5, (5,AY)
= s, (5 AY) + L [AY(Bg) - 0 5 AY)|
ey
By definitions of w and A‘I’ for each k,, € B,
Vb, (5, AY)
- A\Il(bma 0) A‘Il(km - ]-»0) (2)
= ¢m Km ( )

Hence, by equations (1), (2) and definitions of Ag and U,

Similarly, ¥, ;. (S, AY 3) = W, .. (Z,A) for each k, ¢

B,,. So, the EIAE fits BCFE. |

Lemma 4: 1f a scheme 7 fits PFTS and BCFE then it also
fits SCOM.

Proof: Let /) be a scheme on MCS satisfy PFTS and
BCFE, and (Z,A) € MCS. It is trivial for [Z| < 2
by PFTS. Assume that [Z| > 3. Let n € Z, consider
the reduced situation ({n} A {n}) By definition of A" (n}>
A{n}(bn) = AD) - % T = (Z,A). Since 7 fits

. meZ\{n} . o
BCFE, i 1, (Z, A) = fi i, ({n}, AT{’H}) for each k,, € B,,.
i (Z,A) = N 5 ({n}, A7 ) On the other
hand, by PFTS of UN/S ( A) = A{ }(b) Hence,

> i (Z,A) = A(b). ie., 7 fits SCOM. -

mez
Theorem 1: A scheme 7) on MCS fits PFTS and BCFE

if and only if ) = .

In particular, 7

Proof: By Lemma 2, W fits PFTS. By Lemma 3, W fits
BCEFE.

To prove uniqueness, suppose 7 fits PFTS and BCFE on
MCS. By Lemma 4, 7} also fits SCOM. Let (Z, A) € MCS.
If [Z| < 2, then by PFTS of #, 7(Z,A) = ®(Z,A). The
case [Z] > 2: Let m € Z and S = {m,n} for some n €
Z \ {m}, then for each k,, € B,,,, k,, € By,

ﬁm,km(z A) 77nk: ( /5 A)A
— i (5, A2) — i, (5, AD)
(BCFE of
= ‘I’mk (57 %)_ (57 %)
(PFTS o )

3)

[Ag(z?m, 0) — A2(ky, — 1,0)

~AL(0,5,) + AZ(0, k, — 1)}
(Deﬁnltlon 1)
A

(b 07, my) — Alkim
—A (b, 07 (y) + Alkn
(Deﬁnition of A%)

~1.07,0,)]

Similarly taking, W instead of 7 in equation (3), we can
derive that
@k, (Z,A) = 1, (Z,A)
= A(b’rm Z\{m}) - A(k'rn - 1, 07\{771}) (4)

Hence, by equations (3) and (4),

7z7fb,k7n (ZA) 77n kn (771&)
= WYk, (Z,A) =¥, (2,
U, (Z,A) =t for each
(]n, k). It remains to show that ¢ = 0. By SCOM of 7 and
v,

A).
This implies that 7,,, . (Z, A) —

0 = [A®) - A®)
> [ﬁmygm (Z.A)-¥, ; (Z, A)}
meZ
= |Z| -t
Hence, t = 0. [ |

Example 1: Apply a scheme 7) on MCS by for each
(Z,A) € MCS and for each (m, k,) € PZ,

. — 2 U, . (Z,A) if|Z] <2,
nm,km(Z,A):{O k(2. A) if |Z] <

otherwise.

It is clear that % fits PFTS, but it does not fit BCFE.

Example 2: Apply a scheme 7) on MCS by for each
(Z,A) € MCS and for each (m,kn) € PZ,
T, (Z, A) = ‘Tg’). It is clear that # fits BCFE, but it
does not fit PFTS.
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B. Symmetry for treatment and related axiomatic analysis

In this section, we characterize the EIAE by introducing
and analyzing a specific symmetry-based property.
Let 7) be a scheme on MCS.

o 7 fits symmetry for treatment (SYMT) if, for each

(Z,A) € MCS, and for some (m, kp,), (n, k,) € PZ
and each [i € BZ\{m n} if A2, by, 0) — A(fi, kp —
1,0) = A(ji,0,b,) — A(;L,O,kn — 1), then it must be
that ﬁm km (7 A) - ﬁn kn (7 A)

« 7 fits synchronized regulation (SYRE) if, for each
pair (Z A) (Z,U) € MCS with A(i) = U(7) +

3 Z Cm.q» for some ¢ € RP” and each i€ B,

med (i) =1
J— ~ — A gm,
then ﬁ(Z7A) = U(Zv U) + ( zk: Q’L#J)(m,km)EP?‘
q=Rm

The SYMT property formalizes the idea of functional
symmetry: if two participators exhibit identical marginal
contributions under specified behaviours, their allocated
outcomes should be equal. The SYRE axiom captures a form
of responsiveness to global resource variation, requiring the
allocation scheme to adjust proportionally when aggregate
value changes. In the remainder of this subsection, we
prove that the EIAE satisfies both SYMT and SYRE, and
examine how these properties, together with SCOM and
BCFE, logically imply PFTS and jointly characterize the
EIAE scheme uniquely.
Lemma 5: The EIAE fits SYMT. =
Proof: Let (Z, A) € MCS. Assume that A(fi, by, 0)—

A(ji, km —1,0) = A(j,0,b,) — A(fZ,0, k, — 1) holds for

some (m, k), (n, ky) € PZ and each i BN Take
= 02\ fm,n}- Then,

{&(lznuof\{m}) A(knz 1 Oz\{m})
= A(bn, 07, y) — Ak = 1,07 (,)),
which 1mp11e S Ui, (Z,A) = by 1. (Z, A). Therefore,
mk (7 )
= Unk,(Z,A) + 5 [AG) - % 0,5,(Z,4)]
teZ
= ok (ZA) + L [AG) - X 0, (Z,A)]
R o teZ
= W, (Z,A).
Hence, the scheme ¥ fits SYMT. [ |

Lemma 6: The EIAE fits SYRE.
Proof: Let (Z,A),(Z,U) € MCS be such that

H m

A(@) =U(@) + X 3 Cmyg for each ji € BZ and for
 med(p) =t
some ¢ € RP”. Then, for each (m, k,,) € PZ
d}’md@m (Za A) .
= bmof\{m}) - %(km -1, 07\{m})
A b7n A
= Um0z fny) + 2 Gng = Ulkm = 1,07, 1)
knl_l
= 2 Gma
q=1
. _ . b
= wm km(Zv U) + Cm.,q
q=km

Thus,

Therefore, the EIAE satisfies SYRE. [ |
Lemma 7: If a scheme 7 on MCS fits SCOM, SYMT
and SYRE, then 7 fits PFTS.
Proof: Assume that a scheme 7) satisfies the axioms
SCOM, SYMT, and SYRE. Consider a two-player setting
(Z,A) € MCCS with Z = {m,n} and m # n. We construct

a new situation (Z, U) where, for each X € B,
X,’, N
> S[AG 07 4) -
R ieJ(X) 9=t
A(q—1,0% (;1)]- By construction, U removes each player’s

the function
U is defined as U(X) = A(X) —

marginal contributions from the original A allocation. For
instance, for each k,, € B,,, we have

U(kp, 0)

~ km
= Alkn,0) = L[A(0,07,) — Alg = 1.07,)]
= A(km,0) — A(k,0)
= 0.

Similarly, ﬂ((),kn) = 0 for all k, € B,,. Furthermore,
U(bm,0) — U(kp, — 1,0) = 0 = U(0,by,) — U(0, ky, — 1),
implying that all marginal differences in U vanish. By the
SYMT property of 7, we therefore have 7 k,, (Z, U) =
Nk, (2, U). Invoking SCOM for 7 in the modified situation,
the total allocation satisfies

U0) =, (2.0)+0,; (2,0) =24, 5 (Z,0). 5

Therefore, by Equation (5) and the definition of fJ, we obtain
(2,0)

_ (

% [AD) =5, (2 A) =, 5,

Now, by applying the SYRE property of 7, we recover the
original allocation as

Cd)

m,bm
)

(Z,A)].

Ukan(Z A)
nmk (Z U)A
5 [A0) -4,
“V‘wmkm(z A
= 'I’mk ( )

+ Y e (Z, A)
5., (ZA) =9,

sOm

By symmetrlc reasoning, we similarly obtain 7, i, (Z, A)
W, .. (Z,A) for each k, € B,. This confirms that 7 fits
PFTS ]
Theorem 2: A scheme 71 on MCS fits SCOM, SYMT,
SYRE and BCFE if and only if j = ¥
Proof: By Lemmas 1, 3, 5, and 6, the scheme W satisfies
all four axioms: SCOM, SYMT, SYRE, and BCFE. The
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uniqueness follows directly from Theorem 1 and Lemma 7,
completing the characterization. ]

The following four schemes are constructed to demonstrate
the logical independence of each axiom appearing in
Theorem 2.

Example 3: Apply a scheme 7 on MCS defined as
T, oo (Z, A) 1/17,, , (Z, A) Then 7 clearly satisfies
SYMT, SYRE, and BCFE, but it fails to satisfy SCOM and
consequently PFTS.

Example 4: Define 7 as the uniform distribution scheme

T, (2, A) = ‘T(‘) This scheme satisfies SCOM, SYMT,
and BCFE, but does not respect the SYRE property, as it
neglects marginal payoff structures.

Example 5: Define 7 as

This 7 satisfies SCOM, SYRE, and BCFE, but fails to satisfy
SYMT due to asymmetric treatment of player indices.
Example 6: Let 1) be defined as
g (Z,8)
— Z (Bl AEDE
SCZ ‘ |‘
mes -
[A (b5 (s ks 020 5) — A(bgy iy 0, 025) |-
This scheme satisfies SCOM, SYMT, and SYRE, but fails to
satisfy BCFE due to its lack of bilateral consistency under
reduction.
In the following, more definitions, related axioms and
alternative characterizations would be also provided. A
multi-choice situation (Z,b,A) € MCS is said to be

a-trivial if )" A, = A(fi) for every ji € EZ, where
 med(@)
& e RP”. Let 7 be a scheme.

o 7 satisfies weak scheme completeness (WSCOM) if 7
satisfies scheme completeness under all one-participator
multi-choice situations.

e 7 satlsﬁes trivial-situations condition (TSCN) if
n(Z b, A) = & under every da-trivial situation
(Z,b,A), where & € RP”,

e 7 sat1sﬁes weak scheme completeness (WTSCN)
if 7 satisfies trivial-situations condition under all
one-participator multi-choice situations.

Lemma 8: The EIAE fits WSCOM.

Proof: 1t is shown that the EIAE fits SCOM. Based on
definitions of SCOM and WSCOM, the EIAE fits WSCOM
absolutely. [ |

Lemma 9: A scheme 1) satisfies WSCOM if and only if 7

satisfies WTSCN.

Proof: Let 1) be a scheme.

7 satisfies WSCOM

& 7(Z,b,A) = A(Z) for all one-participator
multi-choice situation (Z, b, A)

& 7(Z,b,A) = A(Z) and A(Z) = A(Z) for all
one-participator multi-choice situation (Z,b, A)

& 1) satisfies WTSCN.

|

Lemma 10: The EIAE fits WTSCN.
Proof: The proofs of this lemma can be finished via
above two lemmas. ]
Lemma 11: If a scheme 7 fits WSCOM and BCFE then

it also fits SCOM.
Proof: Let 1) be a scheme on MCS satisfy WSCOM
and BCFE, and (Z,A) € MCS. It is trivial for |[Z] = 1
by WSCOM. Assume that [Z| > 2. Let n € Z, consider
the reduced situation ({n},Ar{]n}) By definition of A" (n)
Al (by) = A() - X A5 (Z,A). Since 7 fits
. meZ\{n} . o

BCFE, ik, (Z, A) = ik, ({n}, AY,,,) for each ky, € B
In particular, 1), 7 (Z,A) = U ({n} A" ) On the other
hand, by WSCOM of #), 7, ; (7 A) = A {n}(z?n). Hence,

2. ﬁm b, (77 A) = A(g) i.e., 7} fits SCOM. ]
meZzZ o

Lemma 12: If a scheme 7 fits WTSCN and BCFE then it
also fits SCOM.
Proof: The proofs of this lemma can be finished via
above four lemmas. ]
Theorem 3:

o A scheme 7 on MCS fits WSCOM, SYMT, SYRE and
BCFE if and only if j = W.

o A scheme 77 on MICS fits WTSCN, SYMT, SYRE and
BCFE if and only if 7} = W.

Proof: The proofs of this lemma can be finished via
above five lemmas and Theorem 2. ]

IV. DYNAMIC RESULT

In order to provide a dynamic formulation of the EIAE,
we begin by establishing a representation for the EIAE
using the variation function. Let (Z,A) € MCS and

# € RP’. The variation of i € B?

at point &

is defined as the real-valued expression A(",A,x) =

[A(ﬁ) - Z A(fm — 1707\{7%})} — @(fi), where
meJd (f)

Z(f) = Y. @mj, . Further, we define the constraint
med (i) B

set X(Z,A) = {# € RP| 3. 7 — A(b)}. This

variation function quantifies tfrlrée?liscrepancy between the
realized payoff from a specific collective action and the
payoff allocation prescribed by Z. In this sense, it captures
the local imbalance from a dynamic or adjustment-based
viewpoint in allocation processes.

In what follows, we investigate the connection between
the variation function and the axiom SYMT. Intuitively, if
a resource allocation scheme treats any two participants
symmetrically, then their induced variations, measured under
the same decision profile, should also reflect this symmetry.

Lemma 13: Let (Z,A) € MCCS and Z € X(Z, A). Then

‘A/((gma 07&{771})’ ‘év 3_7:) = ((b’rL7 Oz\{n}) A I)
< fm,l_i,” = ‘I’m,g,,,L(Z7 ) A m,n Z.
Proof: Let (Z,A) € MCS and ¥ € X(Z, A). For each
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pair {m,n} C Z, we compute

?((gwo \{m}) lﬂ) = \”f((l;n,Of\{n}),A,j’)
— A({)m; Z\{m}) Agb,,j — 1,07\{m}) — &, 5.
= A(bn OZ\{n}) A(b, —1 OZ\{n}) fn,z?n
— fm Em n b
[A(b"“OZ\{m}) A(f -1 OZ\{m})]
A 6)
By the definition of the EIAE scheme W, we also have
¥ (Z,A)-¥ ; (Z,A)
= [A(Z?”Lof\{m}) - Eb@ 1, OZ\{m} )] (N
—[A(bn, 0 (y) — A(bn — 1,07 1y

From equations (6) and (7), we conclude

—F . =0 -

n,by m,bm (77 A) - \i’ B (7, A)

g(f B~ Tnfn)
- ; (@5 (Z,A) - q:b (Z,A)).

This gives

os]
o
(e
f<~)
ol
w2
o
8
m
|
Yy
N
>>
o
=
o
(=N
w2
2
Z
=
[¢]
w2
n
a
2
=
[¢]
=
=
=
=

obtain

|7|f ~

m,bm,

Thus, it follows that fm,;m
Z. ]

Based on the notion of Lemma 13, we define a calibration
mechanism that serves as the foundation for a dynamic
formulation of the EIAE. This calibration operates via
an iterative procedure that progressively adjusts an initial
allocation & to better satisfy fairness conditions derived from

the variation function.
Definition 2: Let (Z, A) € MCS with |

X (Z,A). We define the calibrations g, k.,
by for each (m, k,,) € PZ,

d ¥

Z|>2and 7 €
X(Z,A) =R

a3

L (‘A’((gmvof\{m})vA»f) _‘A’((Env
nezZ\{m}

07 (my) A D).

We denote & = (&m,k,,) (s k,,)epz and define an iterative
sequence by setting 7° = 7, ' = g(a° ), e, @ =
g(#7 ') for each (Z,A) € MCS, for each Z € X(Z, A),
and for each ¢ € N.

The purpose of the calibration operator g is to iteratively
reduce inter-agent variation in excesses by adjusting
allocations. This process tends to steer the allocation toward
symmetry-compliant solutions—particularly those satisfying
the EIAE conditions.

Lemma 14: Let (Z,A) € MCS. If ¥ € X(Z,A), then
§(7) € X(Z,A).

___Proof: Let (Z,A) € MCS, m,n € Z and ¥ €
X(Z,A)
Z ‘7((577“07 m ),A,f)—\?((l_)‘n,of n )’Avf)
nEZ\{m}(A i\{A } A o Z\{n} )
= ; (lI"rrL,ENL(Z’A) - lIln,E“(Z’A) - frn,gm + fn,l;")
n€Z\{m}
equations (6) and (7)
= (1ZI-1)-(¥,,; (Z,A) -7, ;)
; ‘i’n En (?7 A) + ; fnagn)
n€Z\mp " neZ\(iy
= (21 (¥,,5.Z.A) -7, ; ) - AG) + A®))
SCOM of ¥, 7 Y(*,A))
= 12| (¥, Z.A) -7, 5
( ) N
Moreover,
Y5 (07 ) AT
meZ neZ\{m}
(B, 071 () AL )
= X7 (¥,5,(ZA) -7, )
716Z A o B (9)
- |Z|'( > ¥ (Z,A)- 7$m’gm)
. Zne_’Z L meZ
= [Z]- (A(d) - A(D))

°
]

(¥(Bms 077 (17) A7) = 9((B 0, () AL D) )|

A nf?\{m}
= A(b).
(equation 9 and ¥ € X(Z, A))

Hence, §(7) € X(Z,A) if z € X(Z,A). [

The next result establishes the convergence of the
calibration process. Under a suitable condition on the
step-size parameter «, repeated application of g yields a
sequence of allocations that converges componentwise to the
EIAE.

Theorem 4: Let (Z,A) € MCS with |Z] > 2.1f0 <
a < I7I’ then {:c }OO | converges to W Em(Z A) for
each 7 € X(Z,A) and for each m € Z.

Proof: Let (Z,A) € MCS with [Z| > 2, m € Z and
7 € X(Z,A). By equation (8) and definition of &,

gmig’ﬁl (f) - fmngL
(e

S (VB 07, (1)) A7) = (B, 071 (1)), AL D) )

Volume 33, Issue 9, September 2025, Pages 3619-3627



Engineering Letters

IF0 < o < 2. then —1 < (1 a |Z|) <land {7 ; }o2,

converges to W . (Z,A). [ |

Inspired by Liao [21], we also define a notion
of completeness that connects allocation outcomes with
marginal coalition behaviour. A payoff vector Z fits

plurality-scheme completeness (PSCOM) under (Z, A)
MCS if

nt 2 F

nez\{m}

b?\{m}’ k )

for each (m,k,,) € PZ. Note that every payoff vector
satisfying PSCOM automatically satisfies the constraint & €
X(Z,A).
Theorem5 Let (Z,A) € MCS with > 2. If

2]
0<a< IZ\ then {79}2¢, converges to U(Z,A) for each

payoff vector # which fits PSCOM in (Z, A).
Proof: This result follows directly from Theorem 4,
together with the observation that PSCOM implies ¥ €

X(Z,A). ]

V. APPLICATION ON RESOURCE ALLOCATING
MANAGEMENT SYSTEMS

The increasing complexity of resource allocation in
practical management systems highlights the critical need for
integrating robust game-theoretical principles. In this section,
we apply several previously developed results, particularly
the EIAE scheme, to industrial and organizational resource
allocation. Our goal is to enhance the effectiveness and equity
of managerial decisions in operational environments.

Consider an  organization comprising  multiple
departments, each responsible for a set of operational
behaviours. Beyond their primary functional tasks,
departments often engage in auxiliary activities, such
as developing derivative services or collaborating on
projects that contribute to the organization’s overall utility.
Let Z denote the set of all departments. When these
departments engage in collective actions represented by
activity behaviour vectors i = (fi),,c7z- the total generated
utility is captured by the function A (7).

Each [i,, represents the activity behaviour chosen by
department m, and A defines the achievable resource output
under any such behavior profile. Thus, this organizational
structure naturally fits the framework of a multi-choice
transferable-utility (TU) situation, with A acting as its
characteristic function. To concretely illustrate this modeling,
consider the following numerical application.

Example 7: Consider an organization Z consisting of
three departments

« Manufacturing (M)
o Marketing (K)
« Research and Development (R)

Each department can participate at different levels of activity.
Leth M =2, b x = 2 and b r = 1. The characteristic function
A specifies the organization’s utility under various behaviour

profiles
A(2,2,1) 108, A(2,2,0) 90,
A(2,1,1) = 130, A(2,1,0) = 65,
A(2,0,1) = 80, A(2,0,0) = 70,
A(1,2,1) = 80, A(1,2,0) = 45,
A(1,1,1) = 65, A(1,1,0) = 40,
A(1,0,1) = 95, A(1,0,0) = 50,
A(0,2,1) = 95, A(0,2,0) = 50,
A(0,1,1) = 30, A(0,1,0) = 90,
A(0,0,1) = 80, A(0,0,0) = 0.

~ = ~

Z d)n,gn (7’ A) ?
(10)
where
D tom (Z, A) Ak,

= A (b, 07\ (yny) — — 1,02\ {my})-

(11)

m*

First, compute the marginal efficacy components )y, 1,

V27, A) = A(2,0,0)— A(l 0,0) 20,
Vi (Z,A) = A(2,0,0) — A(0,0,0) = 70,
V27, A) = A(0,2,0)— (0,1,0) = —40,
Vi (Z, A) = A(0,2,0) — (0 0,00 = 50,
Yr1(Z,A) = A(0,0,1) — A(0,0,0) 80.

Then, compute the EIAE payoffs as follows.

L 1
W o(Z,A) =20+ 3 (108 — (20 — 40 + 80)) = 36,

U1 (Z,A) =70+ E (108 — (20 — 40 + 80)) = 86,
Uro(Z,A)=—40+ = 3 (108 — (20 — 40 + 80)) = —24,
Uy1(Z,A)= +3 (108 — (20 — 40 + 80)) = 66,
U1 (Z,A) =80+ ; (108 — (20 — 40 + 80)) = 96.

This computation illustrates that the EIAE provides a
consistent, marginally grounded, and globally balanced
allocation of resources based on departments’ activity
behaviours.

The efficient individual achieved-efficacy (EIAE) is
tailored to support both equitable and efficient outcomes
across a range of participatory profiles in resource allocating
systems. Beyond establishing its theoretical existence,
the EIAE enables precise valuation of each participant’s
role. To clarify its institutional significance, we highlight
the game-theoretical principles that connect directly to
managerial applications

1) Scheme completeness ensures that the full value of
resources is allocated among participants, eliminating
waste or inefficiency.

2) Principle for two-person situations acknowledges
that pairwise collaboration often drives strategic shifts
in organizations; the scheme preserves fairness even in
these foundational units.

3) Bilateral conformance provides robustness: if a subset
of agents re-evaluates their allocation, the scheme
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guarantees their original position remains stable,
contributing to systemic resilience.

4) Symmetry for treatment enforces equal reward
for equal contribution. Operational equivalence
implies allocative parity—an essential tenet in fair
management.

5) Synchronized regulation asserts that shifts in overall
output should be reflected proportionally across
departments, ensuring coherence in adaptation and
strategy.

Taken together, these principles confirm that resource
allocating management systems are aptly modeled as
multi-choice TU settings. As demonstrated in Section 3,
the EIAE scheme is the unique one that satisfies all five
aforementioned axioms. Consequently, Theorems 1, 2, and 3
validate the EIAE as an appropriate and rigorous framework
for managing dynamic and distributed industrial resource
allocation.

VI. CONCLUDING REMARKS

This paper introduces a rigorous extension of the
pseudo equal allocation of non-separable costs (PEANSC)
to multi-choice transferable-utility (TU) situations. By
explicitly incorporating both participants and their respective
activity behaviours, we proposed the efficient individual
achieved-efficacy (EIAE) and established its axiomatic
foundation. In addition to the theoretical development, the
proposed model has been shown to be applicable in resource
allocating management, with a focus on fairness, operational
symmetry, and dynamic convergence.

1) Summary of Key Contributions

e We generalized the PEANSC to a multi-choice
TU framework, allowing participants to engage at
varying degrees of intensity, thereby broadening
the class of cooperative environments in which fair
allocation can be studied.

« The EIAE was axiomatized by five key properties:
scheme completeness, symmetry for treatment,
bilateral conformance, synchronized regulation,
and the principle for two-person situations.
Together, these properties uniquely determine the
EIAE.

e A dynamic calibration process was developed to
compute the EIAE iteratively. The convergence
result ensures that the scheme is not only
theoretically sound but also practically
computable.

o The theoretical structure was implemented in a
resource allocating management context. This
application demonstrates the real-world relevance
of EIAE, particularly in organizational settings
involving decentralized decision-making and
cooperative value generation.

2) Symmetry as a Central Principle

e« The notion of functional symmetry—expressed
formally via the symmetry for treatment
axiom—played a central role in ensuring
that participants contributing equally (in marginal
terms) are treated equally. This reflects a fairness

standard often required in organizational or
industrial environments.

The variation function, defined to capture
dissatisfaction under given allocations, further
supports this symmetry by aligning deviations with
marginal equity. It also provides a mechanism
through which the EIAE can be dynamically
approached.

The iterative adjustment process proposed for the
EIAE is structurally symmetric, ensuring that the
scheme remains fair not only in static outcomes
but also during transitional phases of resource
realignment.

3) Comparisons with Existing Research A meaningful
comparison arises with the work of Hwang and Liao
[13], who explored extensions of the Shapley value
[32] in fuzzy game settings. The present paper differs
in several essential aspects:

While Hwang and Liao [13] considered fuzzy
environments, this study operates within
multi-choice TU situations, capturing a different
form of agent heterogeneity.

Their extension of the Shapley value was based on
the reduction framework of Hart and Mas-Colell
[8], whereas this work builds on the reduction
principle introduced by Hsieh and Liao [9],
targeting the PEANSC rather than the Shapley
value.

Our results contribute to practical domains,
specifically resource allocating management
systems, through theoretical application and
numerical illustration, a dimension not addressed
in Hwang and Liao [13].

4) Future Research Directions The contributions
presented in this paper point toward several potential
extensions and refinements:

Alternative Solution Concepts: Beyond the
PEANSC, it would be valuable to explore how
the axioms introduced here can characterize or
approximate other well-known solutions, such as
the bargaining set, the kernel, or the nucleolus.
Axiomatic Flexibility: The bilateral conformance
axiom was central to our uniqueness results.
Investigating allocations under relaxed
conformance conditions could reveal new
classes of solution schemes or partial consensus
principles.

Dynamic and Computational Implementations:
The calibration method underlying the EIAE can
be further formalized into real-time algorithms,
facilitating applications in decentralized and
large-scale computational settings, particularly in
logistics and network coordination problems.
Cross-Domain  Applications: The EIAE
framework may also be adapted for other
environments requiring resource coordination,
such as distributed Al systems, collaborative
project scheduling, or joint decision-making
under uncertainty.

5) Conclusion In summary, this paper provides a
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mathematically grounded and operationally meaningful
allocation scheme tailored for multi-choice cooperative
environments. By extending the PEANSC and
rigorously characterizing the EIAE, we contribute
significantly to both the theory and practice of resource
allocation. The integration of fairness, symmetry,
and dynamic adjustability strengthens the relevance
of our model across a range of organizational and
systemic applications. Future work may expand on
these insights by developing broader solution families,
relaxing existing axioms, and embedding the EIAE into
algorithmic or multi-agent infrastructures.
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