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Abstract— Studying exact solutions to the high-
dimensional nonlinear evolution equations provides
valuable insights into the wave behaviors and interac-
tions. This work employs the bilinear method to ex-
plore exact solutions of the (4+1)-dimensional Fokas
equation. Specifically, three distinct types of lump
solutions are constructed through the application of
fourth-order symmetric matrices, exponential func-
tions and trigonometric functions. Additionally, the
characteristics of these lump solutions are analyzed
and graphically represented to facilitate a deeper un-
derstanding of their properties.
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1 Introduction

Investigating integrable properties and the construc-
tion of exact solutions for nonlinear evolution equations
(NLEES) are of paramount importance in understanding
nonlinear phenomena in physics and mathematics [1H4].
Various methods have been developed to obtain spe-
cial solutions of NLEESs, including the inverse scattering
transformation (IST) [5], Lie group method [6], Darboux
transformation (DT) [7], and Hirota bilinear method [§],
among others, in which, Hirota bilinear method, in par-
ticular, stands out as a canonical approach for investi-
gating exact solutions of NLEEs.

Among the diverse types of exact solutions [9,[10],
lump solutions are particularly noteworthy. Lump so-
lutions, which are localized in all spatial directions, rep-
resent a class of rational function solutions. It has been
demonstrated that many soliton equations [11], including
the B-type Kadomtsev-Petviashvili (BKP) equation [12],
the Davey-Stewartson (DS) equation [13], and so on.

Higher-dimensional integrable models are increasingly
recognized for their significance in mathematical physics.
This study concentrates on a (4+1)-dimensional nonlin-
ear Fokas equation [14], which is expressed as:

2 _
4ux1t — Uz mqaias T Yzizomons T 6(“ )xmcz - 6uy1y2 =0,

(1.1)

where v = u(z1, 2, Y1, Y2, ).
Due to the significant applications of higher-
dimensional equations in practical scenarios, diverse so-
lutions to Eq.(1.1) have been thoroughly investigated.
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Yang et al. [15] discussed the Lie point symmetries and
extracted doubly periodic wave solutions. Lee et al. [16]
employed three exact methods to derive some exact solu-
tions of the proposed equation. Wang et al. [17] obtained
rogue wave solutions of the equation. Cao et al. [1§]
investigated various wave solutions for Eq.(1.1), includ-
ing localized solitary waves, breather-type waves, multi-
solitons and rogue waves. Despite the extensive studies
conducted on this equation, our findings in this work rep-
resent previously unreported results in this field. The
primary objective of this study is to seek three differ-
ent kinds of lump solutions using an appropriate linear
transformation and analyze the characteristics of the so-
lutions.

This paper is organized as follows. We first present
the Hirota bilinear forms of the (4+41)-dimensional Fokas
equation using a suitable linear transformation. Sub-
sequently, we derive three different kinds of lump-type
solutions for the dimensionally reduced equation and de-
pict their characteristics through graphical representa-
tions in sections Section [p] provides a concluding
summary of our key results.

2 Type I lump solutions
This study utilizes the following transformation
T = kw1 + kowo,
y = ksy1 + kayo,
u= (k3 — k) f)za,

the bilinear form of Eq.(1.1) is

(2.1)

4 Gksks
T kl

(4D Dy + ko (k3 — k7)D D)f-f=0, (22)

where D represents Hirota bilinear operator defined as

00,0 0
05 0 do  Oo’
. ﬁ(6/70/)|5’:6,0’:<77

where «, 3 € C°°(R?). At this point, Eq.(1.1) transforms
into the KP-type equation.

To obtain new lump solutions, we take the following
assumption

Di*Dla - = ( "a(0,0)

(2.3)

f=XTAX + o, (2.4)

where X = (1,2,y,t)", A = (a;;) is a fourth-order sym-
metric matrix, and a;;(i,j = 1,2,3,4), uo are real con-
stants to be determined. Then, we insert Eq.(2.4) into
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Eq.(2.2), let all the coefficients of different polynomial of
x,y,t be zero. We obtain two cases of a;j, 1o as follows
Case I:

= 32(1330,4214]{3?,
a1y = _ 3araagsksky
2(144]{31

a13 = 13,14 = G414,

2 1212
9aszsksky —0
a22 = 5 » W23 )
4a44k1
a 3aszksky
24 = —
2kq
azs = asz,azq = 0,
(44 = Q44, o = Mo, (2.5)
where a13,a14, a3, aqq, po are free parameters,
By = —8lagskikikok? 4+ 8las,k3kiks
2 213 2 3
+ 32@130/44kl + 32011401330444]{71
2 13
- 32&33#0&44]61.
Case II:
By
ajl = 2 )
2(&22(133 — a23)k3k4
alz = ai2,a13 = 13,
3ksky(a12a33 — 2a13a23)
a4 = — )
2(122]61
Q22 = G22, 023 = 023,
2
o 3k3k4(a22a33 — 2&23)
a4 = — )
2&22k1
o — Gon s — 3azzassksky
33 = 033,034 = — (-
’ 2&22]€1
9a2.k3k?
33R3 K4
agq = Ho = fo, (2.6)

2 bl
40,22]61
where a12, a13, a2z, ass, ass, o are free parameters,

By = —a32k}i’k‘2 + aggk‘lkg + 2a%2a33k3k4
— 4&12&13&23k3k4 + 2&%3&22163]{74

— 2ag9a33kzkafio + 2a35k3kafio.

For case I, the solutions in (2.5) are analytic if the
parameters satisfy that

azz # 0,a44 #0,k1 # 0.
Let

a3 =1,a14 =2,a33 = 1,a44 = 2, 1o = 1,
by =1, kg = 2. ks = 1, kg = 1,

we get the solution of Eq.(1.1) as follows

27 3(-3+ % —3¢)2
4A, A2 ’

(2.7)

u =

Figure 1: Lump solution.

where
_4&_3&4_ +2t+(_§+gj_ﬁ)
764 2 278 2
3z
+(y+1)y+(2—7+2t)t.

The localized, wave-like structure of the lump solutions
is depicted in Fig.1. The density plot(Fig.2) provides a
visual representation of the solution’s intensity distribu-
tion, with warmer colors indicating higher amplitudes.
The contour plot(Fig.3) offers a clear view of the so-
lution’s level curves, emphasizing its spatial symmetry
and peak locations. Fig.4 shows the lump solution main-
tains its shape over time, highlighting its soliton nature,
which reveals the temporal evolution of the lump solu-
tion, demonstrating its stability and propagation char-
acteristics over time.

For case II, the solutions in (2.6) are analytic if the
parameters satisfy that

age #0,k1 #0,ks # 0, kg # 0, a00a33 — a%s # 0.
Let

a2 = 1,a13 = 1,a22 = 2,a23 = 1,a33 = 1,
po=1,k1 =1, ko =2,k3 =1,kys =1,

we obtain the solution of Eq.(1.1) as follows

12 3(2+ 4z +2y)?

where

3t
As=x4+y+—+25+2z+y+ 1z

4

3t 3,3y 9t

—+1 =+ =+ )t
+(:c+y+4+ )y+(4+4+8)
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Figure 2: Density plot.

Figure 3: Contour plot.

As age = 2, Figs.5-6 depict the lump solution and a
graphical illustration of the solution’s intensity distri-
bution, respectively. Subsequently, we modify the pa-
rameter age = 200, and the outcomes are displayed in
Figs.7-8. These results reveal that the symmetry of the
solution has changed.

3 Type II lump solutions
To obtain the second type of lump solution, we take
the following assumption

f=XTAX + by exp(box + b3y + bdt + b5) + po, (3.1)

where X = (1,z,y,t)7,A = (a;;) is a fourth-order
symmetric matrix, and a;;(i,j = 1,2,...,4),b;(1 =
1,2,...,5), 40 are real constants to be determined.
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Figure 4: Dynamic analysis.

Figure 5: Lump solution.

Then, we insert Eq.(3.1) into Eq.(2.2), let all the co-
efficients of different polynomial of z,y,t be zero. We
obtain three cases of a;j;, b;, 110 as follows
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Figure 6: Density plot.

Figure 7: Lump solution.

Case I:
= b2k ks (k2 — K2)

3@12(]6% — k‘%)k‘gb%
4 )
3(]6% - k‘%)kg(lggb%
4 )

a2 = a12,013 = A13,014 =

a2z = G22,a23 = 0,a24 =

1 1
ass = —§a22b§kfk2 + §a22b§k‘1/€§7 azq = 0,

 9agobiks (K — k3)?
a4 = 16
4 4

b1 = b1,ba = b2,b3 =0,

7b5 = b57,u'0 = Mo,

(3.2)
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Figure 8: Density plot.

where a12,a13, a22, b1, ba, b5, o are free parameters,

By = b2a3,k3ky — biatokiks — baasskikopo
+ b3agoki k3o + a3k ks — adoki kS — 2a3s.
(3.3)

Case 1I:

— B4
a3yb3k1 ko (kT — k3

3Bs5
a14 = —5——, 022 = (22,023 = 23
4&%2k1 ) ) )

a11 )7a12 = 412,013 = A13,

3(a3,03kT ks — a3yb3k1k3 + 2a35)

a24 =

dasoky ’
_ a3503kTks — a3 b3k k3 — 2a3,
asz = — )
2a22
3a23(a§263k§’k2 — (I%ngklkg — 2(1%3)
asy = — ,
34 4a§2k1
9(a3b3k ks — a3yb3ki k3 — 2a3;)°
a44 = 5
44 16a3,k2
b
by = b1,ba = bo, b3 = fes 2
Q22
by — bo(a2,b3k3 ko — adobdkik3 + 6a2s)
4 — 4 2 k )
azak1
bs = bs, fto = Lo, (3.4)

where a12,a13, a2z, ass, by, b, bs, py are free parameters,

By = bajyadkiks — byatyasskiks — bias.kikapio
+ bhagyki ko + agakiks — agkiky — 2afya3,
+ 4a12a13a3022 — 207303,

Bs = a12a3,b3k3 ko — a1a2,b3k1 k3

2
— 2a12a53 + 4a13a220a93.
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Case III:
afabi — agbio + a3y
ail = P) P
a22b2
a12b3
a12 = 12,013 = by
Salg(b%k%k@ — b%klkg + 2()%)
a14 = 4k1b% )
a22b3
a2 = Q22,023 = b2 ;
oy — 30,22(b%k%k2 — b%k‘lk‘g + 2er2))>
Ak1b2 ’
33 = _agz(bgk:fk‘g ;;gk’lkg - 2()%)’
2
3&22()3(()‘21]6%]{?2 — b%k‘lkg — 2[)%)
dsa = 403k, ’
Gag = 9a22(b%ki”k2 — b%klk‘g — 2b§)2
166442 ’

by = b1,b2 = ba, b3 = b3,
k3 — bk + 603

4bsykq ’
bs = bs, o = fio,

ba

where a12, as2,b1, b2, b3, bs, g are free parameters.
We take case I as an example, the solutions in (3.2)
are analytic if

agabik ko (K3 — k3) # 0.

Let
a2 =1,a13 =1,a22 = 1,by = 1,b5 =1,
b5 :17/’[’0: 1ak1 :17k2 :27k3 = 1ak4 =1,

we get the solution of Eq.(1.1) as follows

3(2+exp(z — & +1)

As
3(24 2z — 9t + exp(z — 3 +1))?
A2 ’
(3.5)
where
7 9¢ 9t
A3=§+x+y—5+(1+x—§)x+(1+3y)y

9 9z 8lt 3t
SR — ).
+ ( 5 5 T )t + exp(z 5 + )

Figs.9-12 depict the solution for Case I. From Fig.9,
both solitary waves and lump waves are observed simul-
taneously. The solitary waves are characterized by their
stable, localized wave packets that propagate without
changing shape, reflecting their robust nature in non-
linear systems. On the other hand, the lump waves
appear as localized, two-dimensional structures with al-
gebraic decay in all spatial directions, showcasing their
unique properties in higher-dimensional settings. The
interaction between these two types of waves is clearly

20 20

Figure 9: Lump solution.
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Figure 10: Density plot.

illustrated, highlighting their coexistence and the dis-
tinct features of their waveforms. Figs.10-12 show den-
sity plot, contour plot, and dynamic analysis, respec-
tively. Figs.13-15 present the solutions at three distinc-
t moments, from which it is observed that the solitary
wave and the lump wave coincide at a certain instan-
t before separating. Subsequently, the distance between
them continues to increase, indicating that the two waves
propagate at different velocities.

4 Type III lump solutions

To obtain the lump-periodic solution, we take the fol-
lowing assumption

f= XTAX + b, sin(box + b3y + bat + bs) + 1o, (4.1)
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Figure 11: Contour plot.
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Figure 12: Dynamic analysis.
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Figure 13: Lump solution as ¢t = 0.

Figure 14: Lump solution as t = —5.

where X = (1,z,y,t)7,A = (a;;) is a fourth-order
symmetric matrix, and a;;(¢,j = 1,2,...,4),b;(i =
1,2,...,5), 40 are real constants to be determined.
Then, we substitute Eq.(4.1) in Eq.(2.2) and look up
for the coefficients of different polynomials of z,y,t and
trigonometric functions. Then, we set each coeflicient to

zero and get

Bg
2a92a33
3azzais
2a22k1 ’

3(133
Aoy = —Q—kl,asg = ags,azs =0,

a1l ,A12 = Q12,013 = 13,

a1y = — a2 = az2,a23 =0,

9a3,
44 = — 5
4a22k% ’

b3 = b3, by = by, bs = bs, j10 = pio,

b1 = 0,by = b,

(4.2)
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Figure 15: Lump solution as ¢t = —10.

where a1s,a13, 22, a33, ba, b3, by, bs, pp are free parame-
ters.

B6 = —CLng%kg + G%lekg —+ 2a?2a33

+ 2a33a22 — 2az2a33 0.
(4.3)

The solutions in (4.2) are analytic if
ags # 0,a33 # 0,k # 0.
Let
a2 =1,a13 =1,a0 = 1,a33 = 1,0 = 1,02 = 1,

b3 = 1ab4 = 1ab5 = 1akl = 17k2 :27k3 = 17k4 = 1a
we the solution of Eq.(1.1) as follows

6 3(2+2z—3t)?

U’:A74_ Ai 5

(4.4)
where

3t 3t
A4=5+x+y——+(1+x—5)x+(y+1)y

2
3 3z 9t
B T

gty

The structure of the solution (4.3) is visualized in
Fig.16. The density and contour plot are depicted in
Figs.17-18. From the figures, it can be seen that un-
der the assumption, the localized, wave-like structure of
lump solutions and periodic phenomena cannot coexist
within the same solution.

5 Conclusions

In this paper, we utilize Hirota’s bilinear method
to investigate three types lump waves of the (4+1)-
dimensional Fokas equation. By introducing a novel

Figure 16: Lump solution.

T I U
=30 =100 10 20 30 40

Figure 17: Density plot of solution (4.3).

transformation within the bilinear formalism, we con-
struct unique lump-type solutions and thoroughly ana-
lyze their dynamic properties. Through detailed visual-
izations in both 2D and 3D, we explore the shapes and
spatial structures of these solutions, providing a compre-
hensive analysis of their dynamic evolution. The results
not only demonstrate the effectiveness of the proposed
method but also provide a foundation for future studies
on lump solutions in more complex systems. The meth-
ods and insights presented here enrich new avenues for
exploring nonlinear wave interactions in multidimension-
al settings.
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Figure 18: Contour plot of solution (4.3).
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