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Abstract— Studying exact solutions to the high-
dimensional nonlinear evolution equations provides
valuable insights into the wave behaviors and interac-
tions. This work employs the bilinear method to ex-
plore exact solutions of the (4+1)-dimensional Fokas
equation. Specifically, three distinct types of lump
solutions are constructed through the application of
fourth-order symmetric matrices, exponential func-
tions and trigonometric functions. Additionally, the
characteristics of these lump solutions are analyzed
and graphically represented to facilitate a deeper un-
derstanding of their properties.
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1 Introduction
Investigating integrable properties and the construc-

tion of exact solutions for nonlinear evolution equations
(NLEEs) are of paramount importance in understanding
nonlinear phenomena in physics and mathematics [1–4].
Various methods have been developed to obtain spe-
cial solutions of NLEEs, including the inverse scattering
transformation (IST) [5], Lie group method [6], Darboux
transformation (DT) [7], and Hirota bilinear method [8],
among others, in which, Hirota bilinear method, in par-
ticular, stands out as a canonical approach for investi-
gating exact solutions of NLEEs.

Among the diverse types of exact solutions [9, 10],
lump solutions are particularly noteworthy. Lump so-
lutions, which are localized in all spatial directions, rep-
resent a class of rational function solutions. It has been
demonstrated that many soliton equations [11], including
the B-type Kadomtsev-Petviashvili (BKP) equation [12],
the Davey-Stewartson (DS) equation [13], and so on.

Higher-dimensional integrable models are increasingly
recognized for their significance in mathematical physics.
This study concentrates on a (4+1)-dimensional nonlin-
ear Fokas equation [14], which is expressed as:

4ux1t − ux1x1x1x2 + ux1x2x2x2 + 6(u2)x1x2 − 6uy1y2 = 0,
(1.1)

where u = u(x1, x2, y1, y2, t).
Due to the significant applications of higher-

dimensional equations in practical scenarios, diverse so-
lutions to Eq.(1.1) have been thoroughly investigated.
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Yang et al. [15] discussed the Lie point symmetries and
extracted doubly periodic wave solutions. Lee et al. [16]
employed three exact methods to derive some exact solu-
tions of the proposed equation. Wang et al. [17] obtained
rogue wave solutions of the equation. Cao et al. [18]
investigated various wave solutions for Eq.(1.1), includ-
ing localized solitary waves, breather-type waves, multi-
solitons and rogue waves. Despite the extensive studies
conducted on this equation, our findings in this work rep-
resent previously unreported results in this field. The
primary objective of this study is to seek three differ-
ent kinds of lump solutions using an appropriate linear
transformation and analyze the characteristics of the so-
lutions.

This paper is organized as follows. We first present
the Hirota bilinear forms of the (4+1)-dimensional Fokas
equation using a suitable linear transformation. Sub-
sequently, we derive three different kinds of lump-type
solutions for the dimensionally reduced equation and de-
pict their characteristics through graphical representa-
tions in sections 2- 4. Section 5 provides a concluding
summary of our key results.

2 Type I lump solutions
This study utilizes the following transformation

x = k1x1 + k2x2,

y = k3y1 + k4y2,

u = (k22 − k21)(ln f)xx, (2.1)

the bilinear form of Eq.(1.1) is

(4DxDt + k2(k22 − k21)D4
x −

6k3k4
k1

D2
y)f · f = 0, (2.2)

where D represents Hirota bilinear operator defined as

Dm
δ D

n
σα · β = (

∂

∂δ
− ∂

∂δ′
)m(

∂

∂σ
− ∂

∂σ′ )
nα(δ, σ)

· β(δ′, σ′)|δ′=δ,σ′=σ, (2.3)

where α, β ∈ C∞(R2). At this point, Eq.(1.1) transforms
into the KP-type equation.

To obtain new lump solutions, we take the following
assumption

f = XTAX + µ0, (2.4)

where X = (1, x, y, t)T , A = (aij) is a fourth-order sym-
metric matrix, and aij(i, j = 1, 2, 3, 4), µ0 are real con-
stants to be determined. Then, we insert Eq.(2.4) into
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Eq.(2.2), l et all the coefficients of different polynomial of
x, y, t be zero. We obtain two cases of aij , µ0 as f ollows

Case I:

a11 =
B1

32a33a244k
3  
1

,

a12 = −3a14a33k3k4
2a44k1

,

a13 = a13, a14 = a14,

a22 =
9a233k

2  
3k

2 
4

4a44k21
, a23 = 0,

a24 = −3a33k3k4
2k1

a33 = a33, a34 = 0,

a44 = a44, µ0 = µ0, (2.5)

where a13, a14, a33, a44, µ0 are f ree parameters,

B1 = −81a433k
3
3k

3
4k2k

2
1 + 81a433k

3  
3k

3 
4k

3 
2

+ 32a213a
2
44k

3
1 + 32a214a33a44k

3
1

− 32a33µ0a
2
44k

3  
1.

Case II:

a11 =
B2

2(a22a33 − a223)k3k4
,                  

a12 = a12, a13 = a13,

a14 = −3k3k4(a12a33 − 2a13a23)

2a22k1
,

a22 = a22, a23 = a23,

a24 = −3k3k4(a22a33 − 2a223)

2a22k1
,

a33 = a33, a34 =
3a23a33k3k4

2a22k1
,

a44 =
9a233k

2  
3k

2 
4

4a22k21
,        µ0 = µ0, (2.6)

where a12, a13, a22, a23, a33, µ0 are f ree parameters,

B2 = −a322k31k2 + a3       
22k1k

3     
2 + 2a2      

12a33k3k4

− 4a12a13a23k3k4 + 2a213a22k3 k4 

− 2a22a33k3k4µ0 + 2a223k3k4µ0.

For c ase I , t he s olutions in ( 2.5) are analytic if t he
parameters satisfy that

a33 6= 0 , a44 6= 0 , k1 6= 0 .

Let

a13 = 1, a14 = 2, a33 = 1, a44 = 2, µ0 = 1,

k1 = 1, k2 = 2, k3 = 1, k4 = 1,

we get the solution of Eq.(1.1) as f ollows

u =
27

4A1
−

3(−3 + 9x
4 − 3t)2       

A2
1

, (2.7)

Figure 1: Lump solution.

where

A1 =
435

64
−    

3  x

2   
+   y + 2t+ (−3            

2             
+ 

9  x

8   
−   

3  t

2   
)  x

+ (y + 1)y + (2− 3x

2
+   2t)t.

The l ocalized, wave-like structure of the l ump solutions
is depicted i n Fig.1. The density plot(Fig.2) provides a
visual representation of the solution’s i ntensity distribu-
tion, with warmer colors i ndicating higher amplitudes.
The c ontour plot(Fig.3) offers a c lear view of t he s o-
lution’s l evel curves, e mphasizing i ts s patial s ymmetry
and peak locations. Fig.4 shows the lump solution main-
tains i ts shape over time, highlighting i ts soliton nature,
which r eveals t he t emporal evolution of t he l ump s olu-
tion, demonstrating i ts s tability and propagation char-
acteristics over time.

For case I I, t he s olutions i n ( 2.6) are analytic i f t he
parameters satisfy that

a22 6= 0, k1 6= 0 , k3 6= 0, k4 6= 0, a22a33 − a223 6= 0 .

Let

a12 = 1, a13 = 1, a22 = 2, a23 = 1, a33 = 1,

µ0 = 1, k1 = 1, k2 = 2, k3 = 1, k4 = 1,

we obtain the solution of Eq.(1.1) as f ollows

u =
12

A2
− 3   (2 + 4x+ 2y)2

A2
2

, (2.8)

where

A2 = x+ y +
3t

4
+ 25 + (2x+ y + 1)x

+ (x+ y +
3t

4
+   1)y + (

3

4         
+ 

3  y

4   
+   

9  t

8   
)  t.
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Figure 2: Density plot.

Figure 3: Contour plot.

As a22 = 2 , Figs.5-6 depict t he l ump s olution and a
graphical i llustration of t he s olution’s i ntensity distri-
bution, r espectively. S ubsequently, we modify t he pa-
rameter a22 = 200, and t he outcomes are displayed i n
Figs.7-8. These results reveal that the symmetry of the
solution has changed.

3 Type II l ump solutions
To obtain t he s econd t ype of l ump s olution, we t ake

the f ollowing assumption

f = XTAX + b1 exp(b2x+ b3y + b4t+ b5) + µ0, (3.1)

where X = (1, x, y, t)T , A = ( aij) i s a f ourth-order
symmetric matrix, and aij(i, j = 1 , 2, . . . , 4), bi(i =
1, 2, . . . , 5), µ0 a re real constants t o b e d etermined.

Figure 4: Dynamic analysis.

Figure 5: Lump solution.

Then, we i nsert Eq.(3.1) i nto Eq.(2.2), l et all t he c o-
efficients of different polynomial of x, y, t be zero. We
obtain three cases of aij , bi, µ0 as f ollows
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Figure 6: Density plot.

Figure 7: Lump solution.

Case I:

a11 =
B3

a22b22k1k2(k21 − k22)
,

a12 = a12, a13 = a13, a14 =
3a12(k21 − k22)k2  b

2
2 

4
,

a22 = a22, a23 = 0, a24 =
3(k21 − k2     

2)k2a22b
2         
2

4
,

a33 = −1

2
a 22b

2     
2k

3 
1k2 +

1    

2           
a22b

2     
2k1k

3    
2, a34 = 0,

a44 =
9a22b

4
2k

2
2(k2  

1 − k2     
2)2 

16
, b1 = b1, b2  = b2     , b3  = 0,

b4 =
b32k2(k21 − k22)

4
, b5 = b5, µ0 = µ0,

(3.2)

Figure 8: Density plot.

where a12, a13, a22, b1, b2, b5, µ0 are f ree parameters,

B3 = b22a
2
1 2k

3
1 k2 − b22    a

2
1 2k1 k

3     
2 − b2    

2a2 2k 
3     
1 k2 µ0 

+ b22a2 2k 1 k
3
2µ0 + a22     2k 

3
1 k2 − a2       

22k1 k
3     
2 − 2a2      

1      3.

(3.3)

Case II:

a11 =
B4

a322b
2
2 k1 k2 ( k21  − k22     ) 

, a12 = a12, a13 = a13,

a14 =
3B5

4a222k1
, a22 = a22, a23 = a23,

a24 =
3(a222b

2
2k

3
1k2 − a222b2  

2k1k
3    
2 + 2a2      

23)

4a22k1
,

a33 = −a
2
22b

2
2k

3
1k2 − a222b2  

2k1k
3    
2 − 2a2      

23

2a22
,

a34 = −3a23(a222b 
2
2 k

3
1k2 − a222b2  

2 k1 k
3    
2 − 2a2      

2      3)

4a222k1
,

a44 =
9(a222b

2
2k

3
1k2 − a222b 2

2 k1k
3    
2    − 2a2      

2      3) 2  

16a322k
2  
1 

,

b1 = b1, b2 = b2, b3 =
a23b2
a22

,     

b4 =
b2(a222b

2
2k

3
1k2 − a222b2  

2k1k
3    
2 + 6a2      

23)

4a222k1
,                             

b5 = b5, µ0 = µ0, (                         3.4)

where a12, a13, a22, a23, b1, b2, b5, µ0 are f ree parameters,

B4 = b22a
2
12a

2
22k

3
1k2 − b22a212a222k1k32 − b2    

2a
3 
22k

3  
1k2µ0

+ b22a
3
2 2k1k

3
2    µ0 + a42        2k

3
1 k2 − a42        2k1k

3
2    − 2a21      2a

2
2 3

+ 4a12a13a23a22 − 2a213a
2  
2 2, 

B5 = a12a
2
22b 

2
2 k

3
1 k2 − a12a2           

22b
2  
2 k1k

3    
2    

− 2a12a
2
23 + 4a13a22a23.
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Case III:

a11 =
a212b 

2  
2 − a22b2        

2 µ0 + a2        
2     2

a22b22
,

a12 = a12, a13 =
a12b3
b2

,     

a14 =
3a12(b42k

3
1k2 − b4       

2k1k
3    
2 + 2b2      

3)

4k1b22 
,

a22 = a22, a23 =
a22b3
b2

,     

a24 =
3a22(b42k

3
1k2 − b4       

2k1k
3    
2 + 2b2      

3)

4k1b22 
,

a33 = −a22(b42k
3
1k2 − b4       

2k1k
3    
2 − 2b2      

3)

2b22
,

a34 = −3a22b3(b42k
3
1k2 − b4       

2k1k
3    
2 − 2b2      

3)

4b3                  
2k1

,

a44 =
9a22(b42k

3
1k2 − b42k1k3    

2 − 2b2      
3)2 

16b4                   
2k

2 
1

,

b1 = b1, b2 = b2, b3 = b3,

b4 =
b42k

3
1k2 − b4       

2k1k
3    
2 + 6b2      

3

4b2k1
,

b5 = b5, µ0 = µ0,

where a12, a22, b1, b2, b3, b5, µ0 are f ree parameters.
We t ake case I as an example, t he s olutions i n (3.2)

are analytic i f

a22b
2
2k1k2 ( k2        

1  − k2     
2     ) 6= 0 .

Let

a12 = 1, a13 = 1, a22 = 1, b1 = 1, b2 = 1,

b5 = 1, µ0 = 1, k1 = 1, k2 = 2, k3 = 1, k4 = 1,

we get the solution of Eq.(1.1) as f ollows

u =
3(2 + exp(x− 3t

2 + 1)

A3

−
3(2 + 2x− 9t+ exp(x− 3t

2 + 1))2       

A2
3

,

(3.5)

where

A3 =
7

3
+ x+ y − 9t

2
+ (1 + x− 9t

2
)x+ (1 + 3y)y

+ (−9

2
− 9  x

2   
+   

81t

4    
)t+ exp(x− 3t

2
+ 1).

Figs.9-12 depict t he s olution f or Case I . From Fig.9,
both solitary waves and l ump waves are observed simul-
taneously. The solitary waves are characterized by their
stable, l ocalized wave packets t hat propagate without
changing s hape, r eflecting t heir r obust nature i n non-
linear s ystems. O  n t he o ther hand, t he l ump waves
appear as l ocalized, two-dimensional structures with al-
gebraic decay i n all spatial directions, s howcasing t heir
unique properties i n higher-dimensional s ettings. T he
interaction between t hese t wo t ypes of waves i s clearly

Figure 9: Lump solution.

Figure 10: Density plot.

illustrated, highlighting t heir c oexistence and t he dis-
tinct f eatures of their waveforms. Figs.10-12 show den-
sity plot, c ontour plot, a nd dynamic analysis, r espec-
tively. Figs.13-15 present the solutions at three distinc-
t moments, f rom which i t i s observed t hat t he s olitary
wave and t he l ump wave c oincide at a c ertain i nstan-
t before separating. Subsequently, the distance between
them continues to increase, indicating that the two waves
propagate at different velocities.

4 T  ype III l ump solutions
To obtain the l ump-periodic solution, we take the f ol-

lowing assumption

f = XTAX + b1 sin(b2x+ b3y + b4t+ b5) + µ0, ( 4.1)
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Figure 11: Contour plot.

Figure 12: Dynamic analysis.

where X = (1, x, y, t)T , A =              ( aij) i s a f ourth-order
symmetric matrix, a nd a ij(i, j = 1 , 2, . . . , 4), bi(i =
1, 2, . . . , 5), µ0 a re r eal c onstants t o b e d etermined.
Then, we s ubstitute Eq.(4.1) i n Eq.(2.2) and l ook up
for the coefficients of different polynomials of x, y, t and
trigonometric functions. Then, we set each coefficient to
zero and get

Figure 13: Lump solution as t = 0.

Figure 14: Lump solution as t = −5.

a11 =
B6

2a22a33
, a12 = a12, a13 = a13,

a14 = −3a33a12
2a22k1

, a22 = a22, a23 = 0,

a24 = −3a33
2k1

, a33 = a33, a34 = 0,

a44 =
9a233

4a22k21
,      b1 = 0, b2 = b2,

b3 = b3, b4 = b4, b5 = b5, µ0 = µ0,

(4.2)
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Figure 15: Lump solution as t = −10.

where a12, a13, a22, a33, b2, b3, b4, b5, µ0 are f ree parame-
ters.

B6 = −a322k31k2 + a3       
22k1k

3     
2 + 2a2      

12a33

+ 2a213a22 − 2a22a33µ0.

(4.3)

The solutions i n (4.2) are analytic i f

a22 6= 0 , a33 6= 0 , k1 6= 0 .

Let

a12 = 1, a13 = 1, a22 = 1, a33 = 1, µ0 = 1, b2 = 1,

b3 = 1, b4 = 1, b5 = 1, k1 = 1, k2 = 2, k3 = 1, k4 = 1,

we the solution of Eq.(1.1) as f ollows

u =
6

A4
− 3   (2 + 2x− 3t)2

A2
4

, (4.4)

where

A4 = 5 + x+ y − 3t

2
+ (1 + x− 3t

2
)  x+ (y + 1)y

+ (−3

2
− 3  x

2   
+   

9  t

4   
)  t.

The s tructure o f t he s olution ( 4.3) i s v isualized i n
Fig.16. T he density and c ontour plot are depicted i n
Figs.17-18. F rom t he figures, i t c an be s een t hat un-
der the assumption, the l ocalized, wave-like structure of
lump s olutions and periodic phenomena cannot coexist
within the same solution.

5 Conclusions
In t his p aper, we u tilize Hirota’s b ilinear method

to i nvestigate t hree t ypes l ump waves o f t he (4+1)-
dimensional Fokas e quation. B  y i ntroducing a novel

Figure 16: Lump solution.

Figure 17: Density plot of solution (4.3).

transformation within t he bilinear f ormalism, we c on-
struct unique l ump-type s olutions and t horoughly ana-
lyze their dynamic properties. Through detailed visual-
izations i n both 2D and 3D, we explore the shapes and
spatial structures of these solutions, providing a compre-
hensive analysis of their dynamic evolution. The results
not only demonstrate t he effectiveness of t he proposed
method but also provide a f oundation f or f uture studies
on l ump solutions i n more complex systems. The meth-
ods and i nsights presented here enrich new avenues f or
exploring nonlinear wave interactions in multidimension-
al settings.
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Figure 18: Contour plot of solution (4.3).
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