
 

  

Abstract—Wind tunnel tests using spring-suspended segment 

models (SSMs) are extensively used to examine the 

wind-resistance performance of long-span bridges. 

Conventional SSMs typically assume constant stiffness 

regardless of vibration amplitudes; however, this holds only for 

low amplitudes. At higher amplitudes, stiffness exhibits a 

nonlinear behaviour. This study presents a theoretical 

investigation of the stiffness nonlinearity in conventional SSMs. 

A 2D mechanical model is developed with appropriate 

simplifications to derive amplitude-dependent equivalent 

vertical and torsional stiffnesses expressions. Using given SSM 

parameters, equivalent stiffness and frequency values are 

computed for torsional amplitudes ranging from 0° to 20° and 

vertical amplitudes from 0 to 0.20 m. The results reveal 

significant amplitude-dependent nonlinearity in torsional 

stiffness and frequency; at 20° torsional amplitude, equivalent 

torsional stiffness decreases by 24.64%, and torsional frequency 

decreases by 13.19%. To limit geometric nonlinearity, a 

torsional amplitude < 5° is recommended. Vertical vibrations 

have negligible effects on torsional stiffness; at 20° torsional 

amplitude, a 0.20 m vertical amplitude reduces the torsional 

stiffness by only 2.73%. Neither vertical nor torsional 

vibrations affect the equivalent vertical stiffness. These findings 

highlight the need for incorporating nonlinear torsional 

stiffness and frequency in analyses to improve accuracy when 

using conventional SSMs for aerodynamic derivative 

identification and wind-resistance performance evaluations 

under large-amplitude vibration conditions. 

 
Index Terms—bridge segment model, spring-suspended 

segment model, stiffness nonlinearity, theoretical study 

 

I. INTRODUCTION  

PRING-suspended segment models (SSMs) have been 

widely adopted in wind tunnel tests to examine 

aerodynamic derivatives and wind-induced vibration 

 
Manuscript received April 19, 2025; revised August 17, 2025.  

This work was supported in part by the Project Supported by the 

Department of Education of Hunan Province (Grant Nos. 23B0645 and 

23A0496), and the Project Supported by the Regional Joint Fund of Hunan 

Provincial Natural Science Foundation (Grant Nos. 2025JJ70276 and 
2024JJ7214). 

Changqing Wu is a lecturer in College of Civil Engineering and 

Architecture, Hunan Institute of Science and Technology, Yueyang, 414000, 
China (e-mail: wuchangqing@hnist.edu.cn). 

Shun Wang is a postgraduate student in College of Civil Engineering and 

Architecture, Hunan Institute of Science and Technology, Yueyang, 414000, 
China (e-mail: 822311140566@vip.hnist.edu.cn). 

Hua Luo is an associate professor in College of Civil Engineering and 

Architecture, Hunan Institute of Science and Technology, Yueyang, 414000, 
China (e-mail: 12015024@hnist.edu.cn). 

Guanghui Wang is an associate professor in College of Civil Engineering 

and Architecture, Hunan Institute of Science and Technology, Yueyang, 
414000, China (e-mail: wgh325@hnist.edu.cn). 

characteristics of bridge decks [1]–[5]. As a critical 

mechanical parameter, the stiffness of an SSM is typically 

determined through its free-decay vibration response. 

Conventionally, the stiffness of an SSM is typically assumed 

to be constant, which is acceptable for studies on the flutter 

critical wind speed and the characteristics of small-amplitude 

vortex-induced vibration (VIV) [6]–[9]. However, when 

examining large-amplitude nonlinear post-flutter and VIV, 

vertically extended springs experience significant inclination, 

leading to nonlinear variations in the geometric stiffness, 

with the torsional stiffness provided by the springs exhibiting 

particularly pronounced amplitude-dependent nonlinear 

behaviour. 

Neglecting the nonlinear stiffness characteristics of SSMs 

in studies on the nonlinear post-flutter and large-amplitude 

VIV in bridges can introduce errors in experimental results, 

compromising the accurate evaluation of wind-resistant 

performance. VIV is a resonance phenomenon triggered 

when the vortex shedding frequency approaches the 

structural natural frequency within specific wind speed 

ranges and may exhibit deviations in the predicted lock-in 

wind speed intervals due to stiffness nonlinearities altering 

the natural frequencies, leading to potential discrepancies 

between the predicted and actual VIV wind speed ranges. 

Furthermore, existing research on nonlinear flutter has 

predominantly employed SSMs in wind tunnel tests, and the 

results have revealed that post-flutter limit cycle oscillations 

(LCOs) arise from structural or aerodynamic nonlinearities 

[10]–[13]. These findings collectively indicate that stiffness 

nonlinearities of conventional SSMs significantly influence 

the identification of nonlinear parameters and prediction 

accuracy of nonlinear flutter responses in bridge engineering 

applications. 

Recent wind tunnel tests have demonstrated that 

conventional SSMs exhibit significant nonlinear mechanical 

behaviour under large-amplitude vibrations, irrespective of 

the presence of wind [14]–[17]. Free-decay vibration tests 

conducted under wind-free conditions have revealed 

amplitude-dependent nonlinearities in the stiffness and 

vibration frequency of conventional SSMs, showing 

progressive reductions with increasing amplitudes [17]–[22]. 

This nonlinearity stems from both fluid–structure 

interaction-induced added mass effects [23]–[25] and 

geometric nonlinearities in springs under large displacements. 

However, existing studies have not systematically isolated 

the relative contributions of these mechanisms. To address 

this issue, Xu et al. [26] investigated the geometric nonlinear 

stiffness of the conventional SSM, deriving computational 
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formulae for the vertical and torsional stiffnesses. Despite 

these efforts, the calculation formulae remain relatively 

complex, which may limit their practical implementation and 

wider application. 

Building on previous studies, this study conducts a 

theoretical investigation into the nonlinear stiffness and 

vibration frequency of the conventional SSM, proposing 

analytical formulae to calculate its equivalent vertical and 

torsional stiffnesses. The effects of the vertical and torsional 

vibration amplitudes on the stiffnesses and frequencies of the 

SSM are quantitatively analysed, and the derived stiffness 

formulae are subsequently simplified based on this analysis.  

The main contributions of this study are as follows: (1) 

establishment of a 2D mechanical model of the conventional 

SSM for equivalent stiffness calculations, with explicitly 

defined simplifications and assumptions; (2) derivation of 

amplitude-dependent analytical formulae for the equivalent 

vertical and torsional stiffnesses based on the proposed 

model; (3) computation of the equivalent vertical and 

torsional stiffness values based on given parameters and the 

proposed formulae, a quantitative assessment of the 

amplitude effects on the system stiffness and vibration 

frequencies, and formulation of simplified stiffness 

expressions based on these evaluations. 

 

II. NONLINEAR STIFFNESS OF THE CONVENTIONAL SSM 

A. 2D Model of the Conventional SSM 

The conventional coupled bending–torsion two-degree-of- 

freedom (2-DOF) SSM mainly comprises eight tensioned 

springs and a rigid bridge segment model. At both ends of 

this model, rigid support arms suspend four upper and four 

lower springs, with four tightened horizontal wires 

symmetrically constraining the lateral motion in the model 

plane. To ensure symmetry, the upper and lower springs are 

vertically aligned, while the left–right and front–rear springs 

are symmetrically arranged about the torsional centre O. 

For analytical simplification, the conventional SSM can be 

reduced to a 2D mechanical model, as illustrated in Fig. 1, 

where the segment model (denoted by TK) is suspended by 

four spring pairs (designated as TA, TC, KB, and KD 

respectively). Points T and K represent the spring-to-model 

connection points, with r denoting the lateral distance from 

the torsional centre of the sectional model to these connection 

points. The x-axis corresponds to the lateral direction, while 

the y-axis represents the vertical direction. Notably, each 

spring pair in the 2D model equivalently represents two 

co-lateral springs in the actual 3D suspension system. 

To facilitate the derivation of the computational formulae 

for the equivalent nonlinear stiffnesses of the conventional 

SSM, this study applies the following assumptions: 

(1) Four sufficiently long, tensioned horizontal wires 

connected to the torsional centre constrain the lateral 

displacements, whereby the segment model is assumed to 

perform exclusively torsional and vertical vibrations (2-DOF 

system), with lateral motion effects on the vertical and 

torsional stiffnesses being neglected. 

(2) The centroid of the sectional model coincides with its 

torsional centre, thereby eliminating gravitational 

contributions to the torsional stiffness. 

(3) Upper and lower springs are assumed to connect at 

identical points on rigid support arms, with dimensional 

characteristics of the support arms disregarded. 

(4) Although actual suspension systems may exhibit either 

uniform or nonuniform stiffness among the four upper and 

four lower springs, for analytical convenience, all eight 

springs are postulated to maintain identical stiffness k with 

invariant properties. Moreover, the initial states (including 

pre-stress and undeformed lengths) are assumed identical 

within respective upper and lower spring groups. 

(5) Co-lateral spring pairs (four groups) are postulated to 

exhibit synchronised vibrations during model motion, with 

all the eight springs remaining in tension throughout the 

dynamic responses. 

(6) Within the range of the torsional amplitude studied in 

this work, the lateral force components of the spring elasticity 

are considered negligible compared with vertical 

counterparts, justifying the exclusion of their torque 

contributions about the torsional centre in subsequent 

theoretical derivations. 

When the sectional model is at its equilibrium position, 

springs TA and KB have length l while springs TC and KD 

maintain length n. The initial force differential between the 

four spring pairs equilibrates the model weight Mg, 

satisfying: 

4 ( )k l n Mg− = .                              (1) 
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Fig. 1. 2D model diagram of the conventional SSM. 

 

B. Mechanical Analysis Model and Equivalent Stiffness 

Formulae of the Conventional SSM 

Under external excitation, the segment model undergoes 

coupled bending–torsion vibrations with a torsional 

amplitude α (defined as positive in the counter-clockwise 

direction) and a vertical amplitude h (positive downward). In 

this configuration, all the four spring pairs develop new 

restoring forces relative to their initial equilibrium 

states: FTA, FTC, FKB, and FKD denote the total restoring forces 

of springs TA, TC, KB, and KD, respectively; FTAy, FTCy, FKBy, 

and FKDy represent their vertical force components; 

while MTA, MTC, MKB, and MKD correspond to the moments 

generated by forces FTA, FTC, FKB, and FKD about the torsional 
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centre, as shown in Fig. 2(a). After deformation, the 

geometric relationship diagram of the sectional model is 

shown in Fig. 2(b). β₁, β₂, β₃, and β₄ denote the angles 

between vectors 
TAF ,

TCF ,
KBF ,

KDF  and the horizontal 

direction, respectively; where θ1, θ2, θ3, and θ4 represent the 

angles between vectors 
TAF and TO , 

TCF  and TO , 
KBF  and 

KO , and 
KDF  and KO , respectively.  
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(a) Force diagram of the model.   
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(b) Geometric relationship diagram after deformation. 

Fig. 2. 2D mechanical analysis model of the conventional SSM. 

 

Taking spring TA as an example, its elastic force FTA and 

moment MTA about the torsional centre are derived based on 

Fig. 2. After deformation, the elongation of spring TA is: 
2 2 2(1 cos ) ( sin )TAl r l r h l  = − + + + − .             (2) 

The elastic force of spring TA can then be obtained as: 

2 2 2

2

2 ( (1 cos ) ( sin ) )

TA TAF k l

k r l r h l 

=  

=  − + + + −
 .         (3) 

The vertical component FTAy of the elastic force FTA can be 

expressed as: 

1

2 2 2

sin

sin
( )

(1 cos ) ( sin )

TAy TA

TA

F F

l r h
F

r l r h





 

= 

+ +
=

− + + +

.         (4) 

The moment MTA generated by the elastic force FTA about the 

torsional centre O can be obtained through the vector product 

of the vector 
TAF and the vector TO , as follows: 

1sinTA TA TAM F TO F r =  =   .                    (5) 

According to the geometric relationship in Fig. 2(b), it is 

known that 1 1( )   = − + , thus: 

1 1

1 1

2 2 2

sin sin( )

sin cos cos sin

sin +( )cos
=

(1 cos ) ( sin )

r l h

r l r h

  

   

 

 

= +

= +

+

− + + +

 .         (6) 

Substituting (6) into (5) yields: 
2

2 2 2

sin + ( )cos
=

(1 cos ) ( sin )
TA TA

r r l h
M F

r l r h

 

 

+

− + + +
 .        (7) 

Similarly, the elastic forces of other springs and their 

moments about the torsional centre O can be derived using 

the same method, as follows: 

For spring TC:   
2 2 22 ( (1 cos ) ( sin ) )TCF k r n r h n =  − + − − −  ,         (8) 

2 2 2

sin
( )

(1 cos ) ( sin )
TCy TC

n r h
F F

r n r h



 

− −
=

− + − −
,               (9) 

2

2

2 2 2

sin

sin + ( )cos
=

(1 cos ) ( sin )

TC TC TC

TC

M F TO F r

r r n h
F

r n r h



 

 

=  =  

− −

− + − −

  ,           (10) 

For spring KB:   
2 2 22 ( (1 cos ) ( sin ) )KBF k r l r h l =  − + − + −  ,           (11) 

2 2 2

sin
( )

(1 cos ) ( sin )
KBy KB

l r h
F F

r l r h



 

− +
=

− + − +
  ,             (12) 

3

2

2 2 2

sin

sin + ( )cos
=

(1 cos ) ( sin )

KB KB KB

KB

M F KO F r

r r l h
F

r l r h



 

 

=  =  

− +

− + − +

   ,        (13) 

For spring KD:   
2 2 22 ( (1 cos ) ( sin ) )KDF k r n r h n =  − + + − − ,        (14) 

2 2 2

sin
( )

(1 cos ) ( sin )
KDy KD

n r h
F F

r n r h



 

+ −
=

− + + −
   ,          (15) 

4

2

2 2 2

sin

sin + ( )cos
=

(1 cos ) ( sin )

KD KD KD

KD

M F KO F r

r r n h
F

r n r h



 

 

=  =  

−

− + + −

 .         (16) 

Thus, in this vibration amplitude state, the total vertical 

restoring force Fy and torsional moment Mα of the SSM are 

given by (17) and (18), respectively: 

y TAy TCy KBy KDyF F F F F= − + −   ,                     (17) 

TA TC KB KDM M M M M = − − +  .                    (18) 

The equivalent vertical stiffness Kh and torsional 

stiffness Kα of the SSM are derived by taking the partial 

derivatives of Fy with respect to vertical amplitude h, and Mα

 with respect to torsional angle α. Their expressions are as 

follows: 
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= 8
y

h h

F
K k K

h


= − 


  ,                            (19) 

2= 8
M

K kr K
 




= − 


  ,                        (20) 

where: 
2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4 1 2 3 4

2h

l n l n p l p n p l p n
K k

S S S S S S S S

 
 = + + + − − − − 

 
,         (21) 

2 2 1 2 3 4

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4

2 8 sin
2

q l q n q l q n
K k r

S S S S

q l q n q l q n

S S S S



    
 = + − − +




− − − − 



.                   (22) 

S1, S2, S3, and S4 represent the deformed lengths of springs TA, 

TC, KB, and KD, respectively. Their expressions are given 

by: 
2 2 2

1= (1 cos ) ( sin )S r l r h − + + + ; 

2 2 2

2 = (1 cos ) ( sin )S r n r h − + − − ; 

2 2 2

3 = (1 cos ) ( sin )S r l r h − + − + ; 

2 2 2

4 = (1 cos ) ( sin )S r n r h − + + − ;        

1p , 2p , 3p , and 4p  represent the vertical projections of the 

deformed lengths for springs TA, TC, KB, and KD, 

respectively. Their expressions are given by: 

1 sinp l r h= + + ;                

2 sinp n r h= − − ;                

3 sinp l r h= − + ;                

4 sinp n r h= + − ;                
2

1 sin + ( )cosq r r l h = + ;              
2

2 sin + ( )cosq r r n h = − − ;             
2

3 sin + ( )cosq r r l h = − + ;             
2

4 sin + ( )cosq r r n h = − ;             

1q , 2q , 3q , and 4q  represent the derivatives of the quantities 

1q , 2q , 3q , and 4q  with respect to the torsional displacement 

α, respectively. Their expressions are given as follows:  
2

1= cos ( )sinq r r l h  − + ;              
2

2 = cos ( )sinq r r n h  − − − ;            
2

3 = cos ( )sinq r r l h  − − + ;             
2

4 = cos ( )sinq r r n h  − − ;             

When α = 0° and h = 0 m, the initial vertical stiffness Kh0

and torsional stiffness Kα0 of the SSM are determined 

as 8k and 8kr2, respectively. 

III. QUANTITATIVE CASE ANALYSIS 

A. Equivalent Vertical Stiffness and Torsional Stiffness 

To quantitatively investigate the amplitude-dependent 

evolution of the equivalent vertical and torsional stiffnesses 

of the conventional SSM, the relevant parameters of the 

springs, segment model, and vibration amplitude ranges were 

specified, as listed in Table I. Based on the Table I parameters, 

the initial stiffness values were calculated as Kh0 = 640 N/m 

and Kα0 = 160 N·m/rad. Using (19) and (20), Kh and Kα under 

varying amplitude conditions were systematically computed. 

Surface plots depicting these stiffness-amplitude 

relationships were subsequently generated, as illustrated in 

Figs. 3 and 4. 

 
Fig. 3. Surface diagram of the equivalent vertical stiffness Kh. 

 

 
Fig. 4. Surface diagram of the equivalent torsional stiffness Kα. 

 

Figs. 3 and 4 clearly show that both Kh and Kα decreased 

with increasing vibration amplitudes, but exhibited distinct 

reduction magnitudes; Kh underwent minimal reduction, 

while Kα showed significant degradation. 

B. Reduction Rates of the Equivalent Vertical Stiffness and 

Torsional Stiffness 

To quantitatively characterise the amplitude-dependent 

reduction trends in Kh and Kα, their respective reduction rates 

are defined as follows: 

100%
8

h
h

K
R

k


=   ,                             (23) 

2
100%

8

K
R

kr





=   ,                             (24) 

where Rh and Rα denote the reduction rates of Kh and Kα, 

respectively; ΔKh and ΔKα were computed via (21) and (22). 

Kh and Kα under varying amplitudes were calculated using 

(19) and (20), respectively, and visualised as 3D surface plots 

in Figs. 5 and 6. Fig. 5 shows that the maximum vertical 

stiffness reduction rate Rh remained < 0.19%, indicating a 

negligible influence of model vibration on the equivalent 

vertical stiffness. In contrast, Fig. 6 reveals a rapid increase in 

the torsional stiffness reduction rate Rα with increasing 

torsional amplitude. When the torsional amplitude α 

reached 20°, Rα reached approximately 25%, demonstrating 

that large-amplitude torsional vibrations significantly 

degrade the torsional stiffness of the system. 
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TABLE I 

PARAMETERS FOR CALCULATING EQUIVALENT STIFFNESSES OF THE CONVENTIONAL SSM. 

Parameter Value 

Single spring stiffness k k = 80 N/m 

Lateral distance r from the torsional centre to the spring attachment points (shown in Fig. 1) r = 0.5 m 

Initial lengths l and n of the upper and lower springs (shown in Fig. 1) l = 1.2 m, n = 0.9 m 

Mass M and the mass moment of inertia Im of the segment model M = 9.8 kg, Im = 0.5 kg·m2 

Vertical amplitude range 0 m ≤ h ≤ 0.20 m 

Torsional amplitude range 0° ≤ α ≤ 20° 

 

 
Fig. 5. Reduction rate Rh of the equivalent vertical stiffness Kh. 

 

 
Fig. 6. Reduction rate Rα of the equivalent torsional stiffness Kα. 

 

Fig. 7 presents the evolution of Kα versus the vertical 

amplitude h corresponding to the torsional amplitude α = 0°, 

5°, 10°, 15°, and 20°. Notably, Kα remained constant when α 

= 0°, demonstrating that purely vertical vibrations do not 

affect the torsional stiffness. Kα decreased with increasing h, 

where the greater α is, the greater the reduction magnitude. 

Table Ⅱ quantifies the reduction rates Rα (defined as the 

percentage decrease in Kα when h increased from 0 to 0.20 m) 

for different α. The maximum Rα observed was only 2.73%, 

confirming that Kα exhibited minimal sensitivity to vertical 

vibrations within the studied amplitude range. 

Fig. 8 presents the evolution of Kα versus the torsional 

amplitude α corresponding to h = 0, 0.05, 0.10, 0.15, and 0.20 

m. As shown, the Kα values for all six vertical amplitudes 

decreased rapidly with increasing torsional amplitude α, 

where higher vertical amplitudes exhibited more pronounced 

reduction magnitudes with α. Table Ⅲ quantifies the 

reduction rates Rα (defined as the percentage decrease when α 

increased from 0° to 20°) for different h. The data 

demonstrate that Rα increased slightly with the vertical 

amplitude h, though the increment remained marginal. 

Compared with the h = 0 m case, the reduction rate Rα for h = 

0.20 m showed an increase of only 2.05%, indicating that 

vertical vibration has a negligible influence on the equivalent 

torsional stiffness of the SSM. 
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Fig. 7. Evolution curves of Kα corresponding to different torsional 

amplitudes versus the vertical amplitude h. 

 
TABLE Ⅱ 

REDUCTION RATES OF THE EQUIVALENT TORSIONAL STIFFNESS 

CORRESPONDING TO DIFFERENT TORSIONAL AMPLITUDES. 

α / ° 0 5 10 15 20 

Rα / % 0 0.09 0.40 1.12 2.73 
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Fig. 8. Evolution curves of Kα corresponding to different vertical amplitudes 

versus the torsional amplitude α. 

 

TABLE Ⅲ 

REDUCTION RATES OF THE EQUIVALENT TORSIONAL STIFFNESS 

CORRESPONDING TO DIFFERENT VERTICAL AMPLITUDES. 

h / m 0 5 10 15 20 

Rα / % 24.64 24.91 25.32 25.90 26.69 
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Based on the above quantitative analysis, within the 

investigated amplitude ranges (0 m ≤ h ≤ 0.20 m, 0° ≤ α ≤ 

20°), the vertical vibration exerted negligible influence on 

both the equivalent vertical stiffness Kh and equivalent 

torsional stiffness Kα of the conventional SSM. Therefore, to 

simplify the analysis, the effects of the model vibration on Kh 

and vertical vibration on Kα were neglected. The simplified 

formulae for Kh and Kα of the conventional SSM are as 

follows: 

0= 8h hK K k=  ,                                (25) 

2= 8
M

K kr K
 




= − 


 ,                    (26) 

where ΔKα is still defined by (22) but differs in that the 

effects of vertical motion are neglected in (26). The 

denotations of the symbols in the ΔKα expression are as 

follows: 
2 2 2

1= (1 cos ) ( sin )S r l r − + + ; 

2 2 2

2 = (1 cos ) ( sin )S r n r − + − ; 

2 2 2

3 = (1 cos ) ( sin )S r l r − + − ; 

2 2 2

4 = (1 cos ) ( sin )S r n r − + + ;  

1 sinp l r = + ; 

2 sinp n r = − ; 

3 sinp l r = − ; 

4 sinp n r = + ; 
2

1 sin + cosq r rl = ; 
2

2 sin + cosq r rn = − ; 
2

3 sin + cosq r rl = − ; 
2

4 sin + cosq r rn = ; 
2

1= cos sinq r rl  − ; 
2

2 = cos sinq r rn  − − ; 
2

3 = cos sinq r rl  − − ; 
2

4 = cos sinq r rn  − ; 

 

C. Vibration Frequencies and the Reduction Rates of 

Torsional Frequency 

Notably, (26) maintains the same form as (20), but 

explicitly neglects the influence of vertical vibration on Kα by 

retaining only the torsional vibration effect. This 

simplification enhances the computational efficiency while 

preserving engineering practicality. 

Neglecting the coupling effect between vertical vibration 

and torsional vibration, the vertical vibration frequency fh and 

torsional vibration frequency fα of the conventional SSM can 

be determined based on Kh, Kα, the segment model mass M, 

and mass moment of inertia Im, as follows: 
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2 2
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As the influence of the model vibration on Kh is neglected, 

the vertical vibration frequency fh remains constant. Using 

(27) and the given parameters, fh was calculated to be 1.286 

Hz. The torsional vibration frequency fα depends on the 

torsional amplitude α, where the initial torsional frequency fα0

 (i.e., the frequency at α = 0°) was 2.847 Hz. Fig. 9 illustrates 

the variation in fα with the torsional amplitude α, revealing 

that fα decreased as α increased, with the rate of decrease 

accelerating at higher amplitudes. 

To quantify the reduction in the torsional frequency, the 

reduction rate Rfα is defined as: 

1 1 aRf R = − −  ,                               (29) 

where Rfα is governed by the reduction rate Rα, and Rα is 

calculated via (24). The evolution of Rfα with α, plotted in Fig. 

9, demonstrates that Rfα increased progressively with α, 

exhibiting an accelerating growth rate. When α ≤ 5°, Rfα < 1%, 

indicating negligible torsional frequency variation in 

practical segment model experiments. For α > 5°, Rfα

increased rapidly, reaching a torsional frequency reduction 

rate of 13.19% at α = 20°. Consequently, in terms of 

geometric nonlinearity, it is recommended that the maximum 

torsional amplitude of conventional spring suspension 

systems should not exceed 5°. However, it should be 

emphasised that the actual maximum allowable α is also 

influenced by mass nonlinearity, damping nonlinearity of the 

system, and lateral vibrations of the springs. 
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Fig. 9 Evolution curves of fα and Rfα versus the torsional amplitude α. 

IV. CONCLUSION 

This study investigated the nonlinear stiffness 

characteristics of conventional SSMs typically employed for 

assessing the wind-resistant performance of bridges. Using a 

2D mechanical model, analytical expressions for the 

equivalent vertical Kh and torsional Kα stiffness were derived. 

A numerical case study quantified the effects of vertical and 

torsional amplitudes on equivalent stiffness and vibration 

frequency. The main findings are summarised as follows: 

(1) Vertical and torsional vibrations exhibited negligible 

influence on Kh. Within the amplitude ranges (0 m ≤ h ≤ 0.20 

m; 0° ≤ α ≤ 20°), the reduction rate Rh remained < 0.19%. 

(2) The equivalent torsional stiffness Kα of the suspension 

system is significantly affected by the torsional vibrations of 

the model, which displayed a notable amplitude-dependent 

nonlinearity. As the torsional amplitude α increased, Kα

decreased significantly. When a vertical vibration was absent 

(h = 0 m), the reduction rates Rα of Kα were 6.11% and 

24.64% for torsional amplitudes of 10° and 20°, respectively. 

When α = 20° and the vertical amplitude h increased from 0 

to 0.20 m, the decrease in Kα increased slightly from 24.64% 

to 26.69%. This indicates that the vertical vibration of the 
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model has a minimal impact on the torsional stiffness of the 

system. 

(3) The vertical frequency fh of the SSM showed limited 

sensitivity to both vertical and torsional vibrations. 

Additionally, vertical vibrations had no effect on the torsional 

frequency fα. In contrast, torsional vibrations exhibited 

significant amplitude-dependent nonlinearity; as the torsional 

vibration amplitude increased, fα experienced a notable 

nonlinear reduction. In the case study presented, when the 

angle α ≤ 5°, the reduction rate Rfα remained < 1%. Therefore, 

to minimise geometric nonlinearity, it is recommended that 

the torsional amplitude in conventional spring suspension 

devices be limited to 5°. When α > 5°, Rfα increased 

significantly; for example, at α = 20°, the frequency 

decreased by 13.19%. Therefore, nonlinear torsional stiffness 

must be explicitly considered when identifying aerodynamic 

derivatives or assessing wind-resistant performance of bridge 

sections under large-amplitude conditions using the 

conventional SSMs. 

The derived formulae for the equivalent stiffnesses (Kh and 

Kα) of the conventional SSM are universally applicable. 

However, the conclusions, such as the numerical values or 

trends, obtained through the quantitative analysis of specific 

examples may not necessarily be applicable to other SSMs 

with other parameter settings, and specific analyses should be 

conducted considering the actual circumstances. Moreover, 

in subsequent research, rigorous wind tunnel tests on the 

SSM must be designed and conducted to further validate the 

theoretical findings presented in this study. 
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