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Abstract—Wireless Capsule Endoscopy (WCE) is a crucial
non-invasive modality for diagnosing gastrointestinal (GI)
disorders. However, automated detection of bleeding lesions
remains challenging due to background complexity, variability
in lesion scales, and subtle visual features. To address these
challenges, we propose DMP-WCEBleedNet, an advanced
bleeding detection framework built upon the YOLOv11
architecture. The model incorporates a Poly Kernel Inception
Block (PKIBlock), which enhances lesion detection across
varying morphologies and sizes using non-dilated multi-scale
convolutions. It also integrates a Self-Modulated Feature
Aggregation (SMFA) module that combines global contextual
information with local texture details through efficient
self-attention approximation and fine-detail enhancement
mechanisms. Additionally, a Dynamic Detection Head leverages
scale-aware, spatial-aware, and task-aware attention to improve
robustness under complex visual conditions. Experimental
results on the Auto-WCEBleedGen V2 dataset demonstrate that
DMP-WCEBIeedNet surpasses existing state-of-the-art methods
in AP, mAP@0.5, and mAP@0.5:0.95, while maintaining high
inference efficiency. These findings highlight the model’s strong
potential for real-time clinical application in WCE-based
bleeding detection.

Index Terms—Wireless Capsule Endoscopy, YOLOvll,

PKIBlock, SMFA, Dynamic Detection Head

I. INTRODUCTION

INCE its introduction in the early 21st century,

Wireless Capsule Endoscopy (WCE) technology has
emerged as a critical tool for diagnosing digestive tract
diseases, particularly in the examination of small intestine
disorders where it occupies an irreplaceable role [1]. This
technology facilitates non-invasive visualization of the entire
digestive tract via a miniature camera capsule, addressing
the limitation of traditional endoscopy, which leaves
approximately 30 % of the small intestine unexamined. It
has substantially enhanced the detection rates of conditions
such as gastrointestinal bleeding and Crohn’s disease [2].
Nevertheless, a single WCE examination can produce
between 60,000 and 100,000 images, requiring physicians to
spend 2 to 3 hours manually reviewing them. This process is
not only inefficient but also increases the risk of misdiagnosis
or missed diagnosis due to visual fatigue [3].

Manuscript received April 24, 2025; revised June 28, 2025.

This work was supported by the Key Laboratory of Internet of Things
Application Technology on Intelligent Construction, Liaoning Province
(2021JH13/10200051).

Yunyun Chai is a graduate student of School of Computer and Software
Engineering, University of Science and Technology Liaoning, Anshan
114051, China (e-mail: 1633006219@qq.com).

Yujun Zhang is a Professor of School of Computer and Software
Engineering, University of Science and Technology Liaoning, Anshan
114051, China (Corresponding author, e-mail: 1997zyj@163.com).

Gastrointestinal bleeding, one of the most common
indications for WCE, exhibits a broad spectrum of
manifestations, including spot bleeding and diffuse oozing.
The interpretation of these images is further complicated
by factors such as camera angles, intestinal contents, and
mucosal movements. Moreover, differentiating true bleeding
from non-hemorrhagic red lesions (e.g., angiodysplasia
or inflammatory hyperemia) presents significant diagnostic
challenges. Consequently, there is an urgent need to develop
efficient and accurate computer-aided diagnostic (CAD)
systems to automate and enhance WCE image analysis.

In recent years, the rapid progress of deep learning
has offered innovative solutions for intelligent WCE
image analysis. Al-based systems can efficiently process
large datasets, automatically detect abnormal lesions, and
support clinicians in decision-making. However, current
methods still encounter challenges in terms of robustness
under complex conditions, sensitivity to small lesions,
and accuracy in multi-class abnormality classification.
The Auto-WCEBleedGen international challenge has
significantly contributed to advancing WCE intelligence
research by providing a large-scale annotated dataset
covering 10 types of gastrointestinal (GI) abnormalities,
such as bleeding, ulceration, and vascular lesions [4].
The competition prioritizes Balanced Accuracy as the
primary evaluation metric and focuses on developing CAD
systems with strong generalization capabilities and clinical
applicability, thereby promoting the intelligent evolution of
WCE technology.

Looking forward, as artificial intelligence continues to
integrate more deeply with medical imaging, WCE-assisted
diagnostic systems are anticipated to enhance diagnostic
efficiency, alleviate clinician workload, and increase early
detection rates of GI diseases, ultimately contributing to the
realization of precision medicine.

II. RELATED WORK

Driven by the Auto-WCEBleedGen challenge, the
bleeding detection research system for WCE images has
gradually matured, forming a clear technological evolution
trajectory.

In the V1 phase of 2024, researchers primarily focused
on adapting and optimizing basic models in an end-to-end
manner. Alawode et al. [5] innovatively integrated the
DETR framework into WCE image analysis, constructing an
integrated detection and classification model with ResNet-50
as the backbone and Transformer encoder-decoder as the
core. By training end-to-end, they eliminated reliance on
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non-maximum suppression (NMS) and enhanced model
performance through the Hungarian matching strategy.
Shekar et al. [6] designed a unified detection architecture
based on YOLOvVS8-X, combining high-quality annotations
with a cross-dataset fusion strategy to expand the
training set to 6,345 images. This effectively improved
the model’s generalization ability and established a data
construction paradigm for subsequent research. Entering
the V2 phase of 2024, research methods became more
refined and task-specific. Alavala et al. [7] proposed a
cascaded processing framework based on Swin Transformer
and RT-DETR, where the front end performed image
classification in the Lab color space using Swin Transformer,
and the back end conducted multi-scale object detection
with RT-DETR. CLAHE preprocessing and Gaussian blur
postprocessing were also applied, significantly enhancing
robustness in complex scenarios. Lin et al. [8] constructed
a two-stage detection process: the first stage used a region
proposal network to locate suspicious bleeding areas, while
the second stage introduced an attention mechanism for
fine classification, improving the detection accuracy of small
targets. In the latest 2025 research, Agossou et al. [9]
combined ResNet-50 as the feature extractor and YOLOVS
as the detector to build an integrated classification and
detection model. They also adopted k-fold cross-validation
and multiple image enhancement techniques (e.g., random
rotation and color perturbation) to jointly improve the
model’s adaptability to diverse data, further pushing the
performance boundaries of the WCE bleeding detection task
[10].

These innovations not only established strong baselines
on the Auto-WCEBleedGen dataset but also provided
transferable frameworks and methodologies for broader
medical image analysis tasks. Despite significant progress,
bleeding detection in WCE images still faces the following
challenges: (1) Multi-scale detection difficulty—GI bleeding
lesions vary widely in size, and conventional CNNs with
fixed receptive fields struggle to capture such variation
effectively; (2) Feature fusion limitations—Clinical diagnosis
requires attention to both local lesion details and global
pathological context, which existing models fail to integrate
efficiently; (3) Complex background interference—Artifacts
such as bubbles, mucus, and food residues often resemble
real bleeding in color and texture, leading to high false
positive rates; (4) Computational bottlenecks—Although
Transformer-based architectures have improved accuracy,
their quadratic complexity (e.g., ViT requires up to 184G
FLOPs per frame) limits their applicability in real-time
clinical settings.

In the development of object detection algorithms,
deep learning-based methods are generally categorized
into two-stage and single-stage models based on their
architectural principles. Two-stage models, exemplified by
the R-CNN series, began with the work of Girshick et
al. [11] in 2014, who introduced a pioneering pipeline
involving region proposal, classification, and localization,
significantly improving detection accuracy. Later, in 2015,
He et al. [12] proposed Faster R-CNN, which further
optimized feature extraction efficiency by incorporating the
Region of Interest (Rol) pooling layer. However, such models
are typically associated with high parameter complexity

and heavy computational costs, making them unsuitable for
real-time clinical deployment in WCE scenarios.

In contrast, single-stage models—such as the YOLO
series, SSD, and RetinaNet—formulate object detection as
a regression problem and enable end-to-end prediction,
offering advantages in terms of reduced parameter size
and high inference speed. Notably, the YOLO series
has undergone multiple iterations of refinement, achieving
detection accuracy that rivals or surpasses two-stage
models while maintaining real-time performance [13]. These
characteristics make YOLO particularly well-suited for
deployment on resource-constrained devices, offering an
ideal solution for real-time analysis of WCE images.

Based on these advantages, this study adopts YOLOvI11
as the baseline framework and proposes an improved
model—DMP-WCEBIleedNet—specifically  tailored for
bleeding detection in WCE images. The model introduces
three key innovations: (1) The Poly Kernel Inception
Block—By introducing multi-scale depthwise separable
convolutions and fusing features from different scales,
the model effectively enhances the detection ability for
multi-scale bleeding regions. (2) Self-Modulated Feature
Aggregation (SMFA) module—By combining EASA, LDE,
and PCFN mechanisms, the module achieves efficient fusion
of local and global features, enhancing the representation
of complex bleeding patterns. (3) Dynamic convolution
detection head—Designed with a triple attention mechanism
to guide the adaptive adjustment of feature responses,
improving the model’s detection accuracy and robustness in
complex backgrounds.

IT1I. PROPAEDEUTICS

YOLOvI1 is a universal multi-task visual model that has
undergone systematic improvements based on the YOLOVS
architecture. Its core optimizations mainly lie in the design
of the backbone module, the enhancement of the attention
mechanism, the upgrade of the detection head structure, and
the refinement of the training strategy [14], [15]. Compared
with YOLOv10, YOLOv11 further improves the efficiency of
feature modeling and detection accuracy. Under the premise
of maintaining high real-time performance, it achieves better
parameter efficiency and generalization ability [16].

In the backbone, YOLOvVI11 replaces the C2f modules in
YOLOV10 with configurable C3K2 modules. Depending on
the value of the c3k parameter, the module dynamically
switches its structure: when c3k=False, it behaves like C2f
with lightweight cross-layer connections; when c3k=True,
the internal Bottleneck is replaced by a more powerful
C3 structure to enhance multi-scale feature representation
[17]. Additionally, a new C2PSA module is introduced
after the SPPF layer (as shown in Fig. 1). This module
extends C2f by integrating Pointwise Spatial Attention (PSA)
with depthwise separable convolutions, aiming to strengthen
spatial attention modeling while maintaining computational
efficiency. Optional residual connections and feed-forward
networks (FFN) are also included to capture nonlinear
relationships between local and global features [18].

In the neck, YOLOv11 retains the PAN path aggregation
structure from YOLOv8 but replaces all intermediate
modules with the C3K2 version to enhance the flexibility
and expressiveness of multi-scale feature fusion [19].
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Fig. 1: Overall architecture of the proposed DMP-WCEBIleedNet model.

The detection head is also redesigned: the classification
branch adopts a dual-depthwise separable convolution
structure (DWConv), which significantly reduces redundant
computation (up to 75 % compression) while maintaining a
wide receptive field [20]. The regression branch combines
standard convolution with a distribution-based integral
mechanism, outputting a 4 x regma x 4 vector for more
precise bounding box modeling. Moreover, the obj branch
from YOLOV10 is removed to avoid inconsistencies between
training and inference.

In terms of training strategy, YOLOvll adopts
Task-Aligned Assigner for dynamic positive/negative sample
assignment, guided by the score formula ¢ = s x u”, where
s is the classification score and wu is the IoU [21]. The
classification branch still uses BCE loss, while the bounding
box regression combines Distribution Focal Loss (DFL)
and CIoU Loss. DFL models the regression coordinates
as a 16-dimensional discrete probability distribution,
enhancing robustness to boundary ambiguity. CloU further
incorporates center distance and aspect ratio into the
optimization, improving localization accuracy for small
objects.

YOLOV11 natively supports five major vision tasks: object
detection, instance segmentation, image classification, pose
estimation, and oriented bounding box (OBB) detection.
Its multi-task adaptability is enabled by: (1) the structural

consistency of the universal feature enhancement module
C2PSA, (2) a dynamic sample assignment strategy adaptable
to various tasks, and (3) the strong generalization ability
of DFL loss for handling fuzzy boundaries and scale
inconsistencies. Compared to YOLOv8m, YOLOvllm
achieves a 1.2 % mAP improvement on the COCO dataset
while reducing parameters by 22 % with similar inference
speed, demonstrating an optimal balance between accuracy
and computational efficiency.

Moreover, YOLOv11 offers high deployment flexibility
and can be seamlessly adapted to edge devices, cloud
platforms, and NVIDIA GPU-supported environments. This
general, lightweight, and accurate model design lays a solid
foundation for the high-performance WCE bleeding detection
model proposed in this work.

IV. METHODS

This paper proposes a WCE bleeding detection model
based on the improved YOLOvI1 architecture, named
DMP-WCEBIeedNet, whose overall structure is shown in
Figure 1. To address the challenges of the bleeding area
in terms of scale, texture and background complexity, the
model has carried out three key structural optimizations at
the backbone network and detection head levels: introducing
PKIBlock (Poly Kernel Inception Block) in the middle of
the backbone to jointly model with multi-scale convolution
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kernels and context anchor attention mechanism (CAA) to
enhance the perception ability of the model for bleeding areas
in complex scenes; designing a lightweight SMFA module
at the front of the backbone to fuse efficient self-attention
approximation (EASA) and local detail estimation (LDE)
to improve the model’s ability to recognize subtle bleeding
areas; the detection head part adopts a unified-scale
Dynamic Head structure, combining multiple dynamic
attention mechanisms that are scale, space and task-aware,
to achieve adaptive modulation of features for classification
and regression branches. These structures jointly enhance
the model’s expressive ability and robustness in multi-scale
bleeding detection tasks, while maintaining good inference
efficiency and deployment flexibility, and possess strong
potential for clinical application.

A. Poly Kernel Inception Block (PKI Block)

In the images of gastrointestinal bleeding, the lesion
areas exhibit significant differences in morphology and scale,
which may manifest as tiny punctate capillary leakage or
large-scale diffuse bleeding regions. This heterogeneity in
scale span often leads to the model ignoring key structural
details during the feature extraction stage, thereby affecting
the detection performance. To address this challenge, this
paper introduces a multi-scale convolution fusion module -
PKIBlock (Poly Kernel Inception Block) into the backbone
network of YOLOvV11 to replace the original C3k2 module,
thereby enhancing the model’s ability to model and feature
expressiveness for multi-scale bleeding regions.

The PKIBlock is composed of two core sub-modules, as
shown in Figure 2, namely the multi-core perception module
(PKI Module) and the context anchor attention module (CAA
Module). The former focuses on extracting local texture and
spatial structure features at different scales, while the latter
guides the model to pay attention to representative context
regions in the image, thereby achieving the collaborative
enhancement of structural breadth and semantic depth.

In the multi-core perception module, multiple groups of
depthwise separable convolutions of different sizes (such
as 3x3, 5x5, 7x7, 9x9) are used in parallel to model
multi-scale responses, thereby expanding the receptive field
range while controlling the parameters and computational
cost. The outputs of each branch are fused along the channel
dimension and then integrated semantically and compressed
through a 1x1 convolution to form a multi-scale semantic
expression at a unified scale. This structural design takes
into account the extraction capabilities of both local texture
and contextual information, and is particularly suitable for
capturing the spatial variation characteristics of lesion areas
in gastrointestinal images due to differences in location and
morphology.

Based on this, the CAA module further enhances the
model’s attention expression on key regions. This module
first performs global average pooling on the input features
to obtain context summary information; then, it uses a set
of orthogonally arranged deep strip convolutions (acting
respectively on the horizontal and vertical directions) to
approximately simulate large kernel convolution operations,
effectively capturing the spatial dependency between distant
pixels. Ultimately, the generated attention map is used

to perform element-wise modulation on the main branch
features, guiding the model to focus more on the ”semantic
anchor” regions in the image, such as the center of
hemorrhage or clearly defined hemorrhagic lesions, thereby
improving the discriminative ability of feature representation.
Finally, the PKIBlock maps the enhanced features to
the required number of channels for the backbone network
through a 1x11 convolution, while retaining the structural
information of the original input features, achieving a
cross-module residual connection. This design improves
gradient flow, avoids information loss, and maintains
compatibility with the original structure of YOLOv11.

B. Self-Modulated Feature Aggregation (SMFA) Module

In the task of identifying gastrointestinal bleeding in WCE
images, lesion areas exhibit distinct multi-scale distribution
characteristics, ranging from micron-level capillary leakage
to centimeter-level ulcer surface bleeding. This scale
imbalance poses significant challenges for model detection.
Although Transformer-based architectures excel in capturing
global context, they suffer from high computational
costs and poor real-time performance, making them
difficult to directly apply in clinical settings. To address
these issues, we introduce a lightweight self-modulated
feature aggregation module (SMFA), which aims to
balance non-local global modeling capabilities with local
detail enhancement capabilities, and improve the model’s
robustness in identifying multi-scale lesion areas at a lower
computational cost.

This module consists of two parallel branches, as shown
in Figure 3: an efficient self-attention approximation (EASA)
branch for non-local feature extraction, and a local detail
estimation (LDE) branch for texture detail enhancement. The
two branches are ultimately fused to form a more expressive
intermediate representation, providing high-quality feature
input for subsequent detection or reconstruction modules.

Feature separation and structural overview: Given the input
feature map Fj, € RC*H>*W it is first elevated in dimension
to 2C through a 1 x 1 convolution, and then split into two
sub-features along the channel dimension:

[E,, F,] = Split(Convi 1 (Fin)), Fy, F, € ROV

D

Among them, F), is input into the EASA branch to extract
non-local context, and F, is sent to the LDE branch to
enhance local detail expression.

For the efficient self-attention approximation (EASA)
branch, to capture cross-regional structural dependencies
at low computational complexity, we design a lightweight
attention approximation path. This path builds non-local
structure awareness through spatial compression, variance
modulation, and resampling mechanisms. First, adaptive max
pooling is applied to F), (with a scaling factor s=8) to reduce
the spatial dimension and enhance computational efficiency:

F, = DWConv3X3(P00l(s) (Fp)) € ROXEx% (2)

max

Then, spatial variance is introduced as modulation
information to perform channel-scale bias enhancement on
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the features: hemorrhage, the LDE branch extracts local texture responses
1 AW through a small receptive field convolution structure. The
o? = W Z Z(F;J —w)?,  p= Mean(F,) input Fy first undergoes a depthwise separable convolution
i=1 j=1 CUR generate detail response features:

F,, = COTZUle(Oé - Fy +ﬂ'02)

where, a, 3 € RE**1are learnable parameters.

Finally, the modulated features are restored to the original
size through nearest neighbor upsampling and an activation
function, and then fused with the input features:

Feusa = Fy © Upsample(GELU (Fy,)) @)

Local Detail Estimation (LDE) branch: To enhance the
model’s discrimination ability for tiny lesions and marginal

Fh = DWOO””SXB(EJ) (5)

Then, fine-grained enhanced features are constructed
through two levels of 1 x 1 convolution and nonlinear
activation functions:

Ede = COTM)lxl(GELU(COTM)lxl(Fh))) (6)

Feature fusion and module output: The SMFA module
fuses the outputs of the two branches through element-wise
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addition and further compresses the information redundancy
with a 1 X 1 convolution to form the final output feature.

FS]\/[FA - Conlel(Feasa + Ede) (7)

This output has the dual expression ability of global
structure and local texture, which can effectively enhance the
robustness and detection sensitivity of the model in complex
image scenarios.

The SMFA module strikes a balance between high
efficiency and strong expressive power in its structure,
making it suitable for medical image scenarios where
computational resources are a concern. Compared with
traditional Transformer modules, SMFA significantly reduces
FLOPs consumption. Meanwhile, by introducing variance
modulation and local estimation mechanisms, it effectively
enhances the modeling quality of bleeding regions at
different scales. In WCE image analysis, its enhanced
features demonstrate higher recognition accuracy for tiny
bleeding points and blurred lesion boundaries, providing
more reliable auxiliary support for practical clinical
applications.

C. DynamicHead

In the task of gastrointestinal bleeding detection, images
often contain complex background elements such as food
residues, bubbles, and mucus, which are highly similar in
texture and color to real lesions, making false detections very
likely. Additionally, bleeding areas may vary significantly in
scale among different patients and from different shooting
angles, ranging from point-like bleeding to large ulcers. This
requires the detection model to not only have good scale
adaptability but also possess precise context understanding
capabilities. To further enhance the model’s detection
performance for lesions of different scales and improve its
robustness in complex backgrounds, this paper introduces
a Dynamic Head in the detection head part of YOLOv1I.
This module adaptively adjusts the response mode of the
convolution kernel at each position by jointly modeling the
feature attention in the scale, spatial, and task dimensions,
thereby achieving more detailed feature construction and
target localization capabilities. The core idea of the Dynamic
Head is to uniformly perceive the discriminative information
from multiple scale levels, spatial positions, and channel
tasks, and enhance the response weight in key areas through
a concatenated attention mechanism, thereby suppressing
background redundancy and highlighting effective structures.

Specifically, suppose the detection head receives feature
maps from different scales (such as P3, P4, P5) of the
backbone network, we uniformly reconstruct them into a
three-dimensional tensor F € RE*5%C as shown in Figure
4, where L is the number of feature layers, S = H x W
is the total number of spatial positions, and C is the
number of channels. The Dynamic Head uses a cascaded
attention mechanism to model this tensor layer by layer.
Firstly, the scale-aware attention mechanism dynamically
fuses the semantic expression differences among different
levels through lightweight convolution to generate weights
for each layer and complete weighted summation, thereby
enhancing the model’s synchronous perception ability for
small and large area targets. Secondly, the spatial-aware

attention mechanism, based on the deformable sampling
strategy, guides the network to focus on discriminative spatial
regions (such as lesion edges and central bleeding points)
by self-learning position offsets and attention weights,
significantly improving the model’s accuracy and robustness
in spatial target localization. Finally, the task-aware attention
mechanism acts on the channel dimension, adaptively
activating channels between the classification and regression
sub-tasks, and by controlling the activation patterns between
channels, achieving task-specific semantic extraction, thereby
effectively enhancing the collaborative performance of
multi-task detection. Mathematically, this structure can be
formalized as:
F =rc(ng(np(F)-F)-F)-F (8)
Among them, 7g, 7, and 7mc respectively represent
the scale, spatial, and task attention functions, and
denotes element-wise multiplication. Unlike the traditional
multi-head detection branch structure, Dynamic Head
integrates all attention operations into a single detection path,
greatly simplifying the parameter structure and enhancing the
deployability and inference efficiency of the overall model.

V. DATASET AND EVALUATION METRICS
A. Dataset

The Auto-WCEBleedGen dataset, developed by the
MISAHUB team, is specifically designed for bleeding
detection and classification in Wireless Capsule Endoscopy
(WCE) images, aiming to advance research in this field.
The dataset is available in two versions: V1 and V2.
Version V1 was first released in collaboration with the 8th
International Conference on Computer Vision and Image
Processing (CVIP 2023) from August 15 to November 11,
2023, and contains 2,618 WCE frames of both bleeding
and non-bleeding conditions. These data are sourced from
multiple internet resources and a dataset rich in various types
and categories of GI bleeding, covering a wide range of
changes throughout the GI tract. Version V2 builds upon
V1 by re-labeling multiple bleeding frames and adding
new XML and YOLO-TXT formats. All data have been
medically verified by professional gastroenterologists to
ensure accuracy and reliability. In this study, we utilized
the V2 version of the dataset to take full advantage of its
improved annotations and more comprehensive data content,
thereby better supporting our research objectives.

B. Evaluation Metrics

To comprehensively assess the performance of the
proposed DMP-WCEBIleedNet model in the WCE image
bleeding detection task, this paper adopts the metric
system officially recommended by the Auto-WCEBleedGen
Challenge. This evaluation system focuses on detection
performance, particularly emphasizing the model’s ability to
precisely locate lesion areas. The main evaluation metrics
include precision, recall, average precision (AP), mean
average precision (mAP), and its multi-threshold versions
(mAP@0.5, mAP@0.5:0.95). In the object detection task,
precision measures the proportion of the detection boxes
identified as bleeding by the model that are truly lesion areas;
recall, on the other hand, reflects the proportion of all true
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lesion areas that are successfully detected. Their definitions
are as follows:

TP TP
TP+ FP’ TP+ FN

Among them, TP represents the number of true bleeding
regions detected, FP represents the number of non-bleeding
regions falsely detected, and FN represents the number of
true bleeding regions missed. Average Precision (AP) is used
to measure the detection performance of a single class of
targets at different recall rates and is defined as the area
under the PR curve (Precision-Recall):

Precision = Recall =

€))

1
AP = / P(R)dR (10)
0
Here, P(R) represents the precision at different recall
rates. Further, mAP@0.5 indicates the average of AP for
all categories when the IoU threshold is 0.5. In single-class
tasks, its value is equivalent to AP@0.5, that is:

N
1
AP@0.5 = — AP; 11
m ¥ ; (an
Furthermore, mAP@0.5:0.95 is the average of AP under
10 standards with IoU thresholds ranging from 0.5 to 0.95
(with a step of 0.05), which measures the stability of the
model under different matching criteria. Its definition is:

9
1
mAP@0.5:0.95 = — > AP@ (IoU = 0.5+ 0.05 x i)
10 =0

(12)

This evaluation method strictly adheres to the assessment
system of the Auto-WCEBleedGen competition and is
applicable to the evaluation requirements of bleeding areas
in different scales and complex backgrounds in detection
tasks. Particularly, considering that bleeding targets in WCE
images are usually small in size, have fine textures and are

sparsely distributed, the above indicators not only measure
the detection capability but also reflect the reliability and
practicality of the model in actual clinical applications.

VI. EXPERIMENTS AND RESULTS ANALYSIS

To comprehensively evaluate the practical performance
of the proposed DMP-WCEBIleedNet model in the task
of bleeding detection in WCE images, this paper designs
and conducts two types of experiments: the first is a
comparative experiment, where multiple mainstream object
detection models are selected as reference objects on the
Auto-WCEBleedGen dataset to compare their performance
with the model proposed in this paper in various metrics,
thereby verifying the effectiveness and advancement of
the proposed method as a whole; the second is an
ablation experiment, using YOLOvIll as the baseline
model, gradually introducing the three improved modules of
PKIBlock, SMFA, and Dynamic Head, to analyze the specific
contributions of each component to the model’s performance,
thereby validating the rationality and independent value of
the proposed structural design. All related experiments are
conducted based on a unified training strategy and evaluation
standard to ensure the comparability and objectivity of the
results.

TABLE I: Experimental Setup

Value
Ubuntu 20.04
PyTorch 2.0.0

Python 3.8

Parameter

Operating System
Deep Learning Framework

Programming Language

GPU NVIDIA RTX 4090D (24GB VRAM)
CPU Intel Xeon Platinum 8481C (16 cores)
RAM 80GB

CUDA Version 11.8
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TABLE II: Comparison of Detection Performance on the Auto-WCEBleedGen Dataset. (Bold indicates the best result.)

Model Name AP mAP@0.5 mAP@0.5:0.95 Recall
YOLOV8-x [6] 0.768 0.768 - -
Two-Stage WCE [10] 0.7464 - 0.6021 -
YOLOVS5-L [4] - 0.632 0.756 -
DETR-DC5-R101 [7] - 0.612 0.723 -
WCE Classification & Detection [9] 0.700 0.682 - -
Transformer-Based [5] 0.7447 0.7328 - 0.7706
Classify ViStA [22] 0.7715 0.726 0.483 -
YOLOVSx [4] 0.650 0.590 0.300 0.59
Divide and Conquer [8] 0.565 0.723 0.434 0.525
YOLOvS5nu [4] 0.680 0.630 0.350 0.640
YOLOVSn [4] 0.690 0.630 0.360 0.560
DMP-WCEBIleedNet (Ours) 0.824 0.7898 0.4831 0.6915

TABLE III: Ablation Study Results on the Auto-WCEBleedGen Dataset. Modules A, B, and C are incrementally added to
the baseline YOLOv11. (Bold indicates the best result.)

Model AP mAP@0.5 mAP@0.5:0.95 Recall
YOLOv11 0.758 0.756 0.46200 0.67100
YOLOvVI1+A 0.799 0.762 0.46600 0.68100
YOLOv11+A+B 0.81487 0.77062 0.48143 0.66062
YOLOv11+A+B+C 0.82403 0.78979 0.48310 0.69149

A. Experimental Configuration

This study was conducted in a Linux-based environment
with Ubuntu 20.04 as the operating system. Model
development and training were carried out using the PyTorch
2.0.0 deep learning framework and Python 3.8. A detailed
overview of the hardware and software configurations is
provided in Table .

During the training process, DMP-WCEBleedNet was
constructed upon the YOLOv11 architecture, with input
images uniformly resized to 640x640 pixels. The model
was trained for 300 epochs with a batch size of 12.
Stochastic Gradient Descent (SGD) was adopted as the
optimizer, configured with an initial learning rate of 0.01,
a momentum of 0.937, and a weight decay factor of 0.0005.
A linear learning rate decay strategy was utilized, while
the cosine annealing scheduler was disabled. To enhance
training efficiency and model performance, Automatic
Mixed Precision (AMP) was enabled. In terms of data
augmentation, techniques such as Mosaic, AutoAugment,
and random erasing (with an erasing probability of 0.4)
were incorporated, while redundant methods like MixUp and
CopyPaste were excluded. The detection task was defined
as object detection, with the Intersection over Union (IoU)
threshold set to 0.7 and a maximum of 300 detection
targets allowed per image. For the sake of reproducibility,
the random seed was fixed to 0, and deterministic training
behavior was enforced to ensure consistent experimental
outcomes.

B. Comparative Experiments

To comprehensively validate the effectiveness of the
proposed DMP-WCEBIleedNet model in the task of bleeding
detection using Wireless Capsule Endoscopy (WCE), we
conducted a systematic comparative experiment on the
Auto-WCEBleedGen dataset with multiple mainstream
detection models. These comparison methods are
representative models in this task or related medical
image analysis fields in recent years, and some of them
are also excellent solutions in the Auto-WCEBleedGen
competition, covering various design paradigms from classic

convolutional architectures to those integrating Transformer
mechanisms.

- Precision-Recall Curve

—— bleeding 0.788

= all classes 0.788 MAP@0.5
0.8 1

0.6 A

Precision
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0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 5: Precision-Recall Curve of DMP-WCEBIleedNet on
the Test Set

All models were trained and tested under the same data
partitioning and training strategies, using the official release
or publicly available and reproducible implementation
versions provided by the authors. The comparison models
include YOLOvVS-L and YOLOvS5nu based on lightweight
convolutional networks, DETR-DC5-R101 integrating the
end-to-end detection paradigm, YOLOv8-x based on the
latest structural optimization, Divide and Conquer and
ViStA methods adopting multi-stage strategies, as well
as Transformer-Based architectures and WCE hemorrhage
detection-related models proposed in recent years. All
comparison methods were experimented with the publicly
available code provided by the authors or their reproducible
versions, under unified data partitioning, training strategies,
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Fig. 6: Loss curves and performance metrics of DMP-WCEBIleedNet during training and validation.
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Fig. 7: Visualization of Detection Results by DMP-WCEBIleedNet on the Auto-WCEBleedGen Test Set.

and evaluation metrics, to ensure the fairness of the results
and the effectiveness of the comparison.

Table 1 presents the comparison results of detection
performance on the Auto-WCEBleedGen dataset. It can
be seen that DMP-WCEBIleedNet performs outstandingly
in all evaluation metrics, with AP, mAP@0.5, and
mAP@0.5:0.95 reaching 0.824, 0.7898, and 0.4831
respectively, significantly outperforming current mainstream
methods.  Particularly in the more comprehensive
mAP@0.5:0.95 metric, this model still achieves the
best result, further verifying its high-precision capability
in modeling and identifying multi-scale bleeding regions.
Additionally, DMP-WCEBIleedNet also demonstrates
excellent performance in recall rate, reaching 0.6915, which
reflects its robustness in detecting bleeding regions in
complex backgrounds.

To further analyze the trade-off between the detection
accuracy and recall capability of the model, this paper plots
the Precision-Recall (PR) curve of DMP-WCEBIleedNet on
the test set, as shown in Figure 5. It can be seen from the

figure that the model can maintain a high precision rate at
different recall rates, and the PR curve shows a generally
stable downward trend, reflecting that DMP-WCEBleedNet
still has a stable recognition ability in dealing with complex
scenes and bleeding areas with ambiguous boundaries.
Among them, mAP@0.5 reaches 0.788, further verifying the
excellent performance of this model in the detection task.

Based on this, this paper further conducts a visualization
analysis of the model’s optimization behavior from the
perspective of the training process. Figure 6 shows the
changes in various loss functions and performance metrics
of DMP-WCEBIeedNet during the training and validation
stages with the number of iterations. The upper row shows
the box loss, cls loss, and dfl loss during the training
stage, as well as the corresponding precision and recall;
the lower row shows the corresponding loss terms and
the change trends of mAP@0.5 and mAP@0.5:0.95 during
the validation stage. It can be seen that all the losses
of the model continuously decrease during the training
process, with a clear convergence trend, and the performance
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metrics steadily improve, demonstrating the good stability
and generalization ability of DMP-WCEBIleedNet in the
feature learning and optimization process, which provides a
solid support for its outstanding performance in the bleeding
detection task.

C. Ablation Experiments

To evaluate the effectiveness of each proposed module
in DMP-WCEBIeedNet, we conducted ablation studies by
successively introducing Modules A, B, and C into the
YOLOvVI11 baseline. The results of each configuration are
shown in Table 2.

Module A introduces a non-dilated multi-scale
convolutional kernel design to enhance the model’s ability
to extract features from bleeding regions of varying sizes.
Module B adds the Self-Modulated Feature Aggregation
(SMFA) module to improve multi-scale semantic feature
fusion. Module C replaces the original detection head with
a dynamic convolutional head to adapt to the diversity of
lesion regions in both scale and morphology.

Experimental results show that after introducing Module
A, the model’s AP increased from 0.758 to 0.799
and mAP@0.5 improved by 0.6%, indicating that the
multi-scale receptive field design effectively enhanced
detection performance. With the addition of Module B,
mAP@0.5 increased to 0.7706 and mAP@0.5:0.95 reached
0.4814, demonstrating the effectiveness of the SMFA module
in feature fusion. Finally, the introduction of Module C led
to the highest detection performance, with mAP@0Q.5 rising
to 0.7898 and recall increasing to 0.6915, further validating
the enhanced modeling capability of the dynamic detection
head for bleeding targets.

VII. CONCLUSION

This paper focuses on the automatic detection of bleeding
lesions in Wireless Capsule Endoscopy (WCE) images and
proposes an efficient detection model, DMP-WCEBIleedNet,
based on the improved YOLOv11 framework. By integrating
a multi-scale convolution fusion structure (PKIBlock), a
self-modulated feature aggregation module (SMFA), and
a unified-scale Dynamic Head detection head, the model
achieves significant improvements in both feature extraction
and region discrimination. Experimental results demonstrate
that the proposed model substantially outperforms various
mainstream detection methods on the Auto-WCEBleedGen
dataset, particularly in critical metrics such as mAP@0.5
and Recall. Ablation studies further validate the independent
contributions of each module to accuracy enhancement.
Moreover, the visualization of detection results presented
in Figure 7 highlights the model’s excellent practical
interpretability, with predicted bleeding areas closely
aligning with real annotations and most detection box
confidence scores exceeding 0.8. This indicates that the
model can accurately locate multi-scale lesions while
maintaining high discrimination confidence and stability. In
summary, DMP-WCEBIleedNet not only ensures superior
detection accuracy but also emphasizes model lightweight
design and inference efficiency, showcasing substantial
potential for clinical deployment.

[1]

[3]

[4

=

[5]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

G. Pan and L. Wang, “Swallowable wireless capsule endoscopy:
Progress and technical challenges,” Gastroenterology research and
practice, vol. 2012, no. 1, p. 841691, 2012.

X. Jia and M. Q.-H. Meng, “A deep convolutional neural network for
bleeding detection in wireless capsule endoscopy images,” in 2016
38th annual international conference of the IEEE engineering in
medicine and biology society (EMBC), pp. 639-642, IEEE, 2016.

R. Hu, H. Wang, S. Zhang, W. Zhang, and P. Xu, “Improved
u-net segmentation model for thyroid nodules,” JAENG International
Journal of Computer Science, vol. 52, no. 5, pp. 1407-1416, 2025.
M. Hub, P. Handa, D. Nautiyal, D. Chhabra, M. Dhir, A. Saini, S. Jha,
H. Mangotra, N. Pandey, A. Thakur, ef al., “Auto-wcebleedgen version
vl and v2: Challenge, datasets and evaluation,” Authorea Preprints,
2024.

B. Alawode, S. Hamza, A. Ghimire, and D. Velayudhan,
“Transformer-based wireless capsule endoscopy bleeding tissue
detection and classification,” arXiv preprint arXiv:2412.19218, 2024.
P. C. Shekar, V. Kanhangad, S. Maheshwari, and T. S. Kumar,
“Automated bleeding detection and classification in wireless capsule
endoscopy with yolov8-x,” arXiv preprint arXiv:2412.16624, 2024.
S. Alavala, A. K. Vadde, A. Kancheti, and S. Gorthi, “A robust
pipeline for classification and detection of bleeding frames in wireless
capsule endoscopy using swin transformer and rt-detr,” arXiv preprint
arXiv:2406.08046, 2024.

Y.-F. Lin, B.-C. Qiu, C.-M. Lee, and C.-C. Hsu, “Divide and conquer:
Grounding a bleeding areas in gastrointestinal image with two-stage
model,” arXiv preprint arXiv:2412.16723, 2024.

B. E. Agossou, M. Pedersen, K. Raja, and A. Vats, “Classification and
detection of bleeding in wireless capsule endoscopy (wce),” Authorea
Preprints, 2025.

S. Neogy, S. Mazumder, N. Chowdhury, T. Sur, and S. Das,
“Towards automated screening via two-stage deep learning: A
pipeline for classification and localization of bleeding from wireless
capsule endoscopy visuals,” in International Conference on Advanced
Computing and Applications, pp. 439-453, Springer, 2024.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 580-587, 2014.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” Advances
in Neural Information Processing Systems, vol. 28, 2015.

X. Li and Y. Zhang, “A lightweight method for road damage detection
based on improved yolov8n,” Engineering Letters, vol. 33, no. 1,
pp. 114-123, 2025.

R. Khanam and M. Hussain, “Yolovll: An overview of the key
architectural enhancements,” arXiv preprint arXiv:2410.17725, 2024.
T. Diwan, G. Anirudh, and J. V. Tembhurne, “Object detection using
yolo: Challenges, architectural successors, datasets and applications,”
Multimedia Tools and Applications, vol. 82, no. 6, pp. 9243-9275,
2023.

A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, et al,
“Yolov10: Real-time end-to-end object detection,” Advances in Neural
Information Processing Systems, vol. 37, pp. 107984-108011, 2024.
C.-Y. Wang, H.-Y. M. Liao, et al., “Yolovl to yolov10: The fastest
and most accurate real-time object detection systems,” APSIPA
Transactions on Signal and Information Processing, vol. 13, no. 1,
2024.

P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of
yolo algorithm developments,” Procedia Computer Science, vol. 199,
pp. 1066-1073, 2022.

C. Wang, Q. Zhang, and J. Huang, “An improved multi-target
detection algorithm in uav aerial images based on yolov8s framework,”
Engineering Letters, vol. 33, no. 4, pp. 998-1007, 2025.

D. Hou, Y. Zhang, and J. Ren, “A lightweight object detection
algorithm for remote sensing images,” Engineering Letters, vol. 33,
no. 3, pp. 704-711, 2025.

D. Wang, J. Tan, H. Wang, L. Kong, C. Zhang, D. Pan, T. Li, and
J. Liu, “Sds-yolo: An improved vibratory position detection algorithm
based on yolovll,” Measurement, vol. 244, p. 116518, 2025.

S. Balasubramanian, A. Abhishek, Y. Krishna, and D. Gera,
“Classifyvista: Wce classification with visual understanding through
segmentation and attention,” arXiv preprint arXiv:2412.18591, 2024.

Volume 33, Issue 9, September 2025, Pages 3684-3693





