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Abstract—This paper introduces RHD-RTDETR, a
lightweight fatigue driving detection algorithm designed
to address the computational complexity and limited
robustness of existing RTDETR algorithms in driving
environments. By combining cross-stage gradient optimization
with dynamic feature reconstruction, the approach achieves
model compression and optimized feature representation,
significantly lowering computational demands without
compromising detection accuracy. The encoder incorporates
the Hilo attention mechanism and an intra-scale feature
interaction module, which refine the processing of both high-
and low-frequency features, thus enhancing the model’s
ability to capture relevant patterns in complex scenarios. The
parallel use of dilated and large-kernel convolutions further
strengthens the network’s ability to detect sparse patterns
and long-range pixel dependencies. Additionally, structural
reparameterization is used to reduce inference overhead
effectively. Experimental results show that RHD-RTDETR
enhances average fatigue driving detection accuracy by 0.6%
while reducing parameter count and computational load
by 39.2% and 37%, respectively, demonstrating superior
performance with strong anti-interference capability and
stability.

Index Terms—Dynamic Convolution RepConv; Hilo
attention; Lightweight; Fatigue detection; RTDETR

I. INTRODUCTION

W ITH the rapid growth of the global economy, the
increasing number of vehicles and drivers has led to

a significant rise in traffic incidents worldwide. This trend
poses considerable safety risks to drivers, passengers, and
other road users. Fatigue driving is widely recognized as
a major factor contributing to severe accidents [1], as it
impairs key abilities such as reaction time, decision-making,
and focus—critical elements for responding to sudden
road events. As a result, developing effective fatigue
detection systems is crucial for ensuring road safety [2].
Recent advancements in computer vision and deep learning
[3] have notably improved fatigue detection algorithms
based on facial feature analysis. Traditional methods,
such as Histogram of Oriented Gradients (HOG) [4] and
Deformable Parts Models (DPM) [5], suffer from limited
generalization across different environments and target
variations, which diminishes their detection performance.
In contrast, Convolutional Neural Network (CNN)-based
models, starting with AlexNet [6], can be categorized
based on the detection approach. Two-stage methods,
such as R-CNN [7], Fast R-CNN [8], Faster R-CNN
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[9], and Mask R-CNN [10], offer high accuracy but are
hindered by computationally demanding region proposal
steps. Single-stage approaches, including the YOLO series
[11] and SSD [12], provide faster inference but suffer
from excessive redundant bounding boxes, which can
negatively impact accuracy. In 2020, Facebook introduced
DETR [13], a Transformer-based model that simplifies
the detection pipeline by removing the need for anchor
boxes and Non-Maximum Suppression (NMS). However,
DETR is limited by slow inference speeds and high
computational costs. To address these issues, Zhao et
al. (2023) introduced RT-DETR [14], the first real-time
end-to-end Transformer detection model, which incorporates
intra-scale feature interaction (AIFI) and cross-scale feature
fusion (CCFF) to process multi-scale features efficiently.
RT-DETR outperforms comparable YOLO models in
both speed and precision [15], bypassing the need for
post-processing and avoiding errors induced by NMS. To
address the challenge of fatigue detection in drivers, we
present RHD-RTDETR, a lightweight model built upon the
RT-DETR framework. By optimizing key components, our
model enhances feature extraction and integration while
significantly reducing computational complexity. Compared
to state-of-the-art approaches, RHD-RTDETR achieves
similar detection accuracy with fewer parameters and lower
computational requirements, offering a practical solution to
improve driver safety.

II. RELATED WORK

A. RTDETR Model

RT-DETR is a state-of-the-art real-time, end-to-end object
detection framework that exceeds YOLO models in terms of
computational efficiency, performance balance, and training
convergence under comparable evaluation conditions [16,
17]. The architecture consists of three main components: a
backbone network for feature extraction, a hybrid encoder for
multi-scale feature integration, and a Transformer decoder
equipped with an auxiliary prediction head [18].

The convolutional backbone network extracts multiscale
features at spatial resolutions corresponding to 8, 16, and
32 downsampling levels. The hybrid encoder incorporates
an Attention-driven Intra-scale Feature Interaction (AIFI)
module, which processes high-level features, thereby
significantly reducing computational complexity while
enhancing inference speed and maintaining competitive
accuracy. Additionally, the encoder includes a Cross-Scale
Feature Fusion Module (CCFM) to integrate multiscale
representations effectively [19, 20]. Using the Intersection
over Union (IoU) metric, the encoder dynamically selects
salient features as initial queries for the decoder, optimizing
object detection prioritization. The Transformer decoder
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Fig. 1. RTDETR structure diagram

refines these queries iteratively through auxiliary prediction
heads, yielding precise bounding boxes and confidence
scores. This architecture enhances detection performance and
efficiency by optimizing feature extraction and multiscale
interactions. The RT-DETR framework is illustrated in Fig.
1.

B. RHD-RTDETR

To overcome the computational challenges associated with
high parameter counts in driver fatigue detection, this paper
presents RHD-RTDETR, an optimized RT-DETR-based
object detection algorithm. The network architecture is
shown in Fig. 2.

The specific improvements are as follows:
(1) RCCSPELAN Architecture: Introduces a cross-stage

gradient optimization framework with dynamic feature
reconstruction to balance computation and accuracy in

fatigue detection. This design combines dual-modality
processing, gradient optimization, and dynamic kernel
configuration to optimize the trade-off between model
efficiency, inference speed, and detection accuracy.

(2) HiLo-Enhanced Transformer Encoder: Integrates the
HiLo attention mechanism into a single-scale encoder
layer with a dedicated feature interaction module. By
splitting the multi-head self-attention (MSA) layer into
high- and low-frequency branches, this modification reduces
computational overhead and enhances the extraction of facial
features.

(3) DRBC3 Module Replacement: Replaces RT-DETR’s
RepC3 block with DRBC3 [21] to improve feature
representation. The module uses multi-branch convolutions
and pooling during training, and structural reparameterization
consolidates the branches into standard convolutional layers
during inference, maintaining performance while reducing
inference costs.

Fig. 2. RHD-RTDETR structure diagram
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C. RCCSPELAN for Cross Gradient Optimization and
Dynamic Feature Reconstruction

Incorporating facial detection modules into existing driver
fatigue detection systems often increases model complexity,
leading to higher parameter counts and computational
demands. To address this, we propose the RCCSPELAN
architecture, which optimizes the balance between
computational efficiency and detection accuracy for fatigue
monitoring. By integrating cross-stage gradient refinement
and adaptive feature reconstruction, RCCSPELAN achieves
a lightweight design while preserving robust feature
representation. Through multi-dimensional architectural
optimization, it effectively balances model compression,
inference speed, and detection precision.

For gradient flow optimization, we introduce a
dual-modality feature processing framework. This involves
(1) a channel separation technique that divides feature
maps into deep computational and shallow preservation
pathways, and (2) learnable transition layers within
cross-stage connections to enable dynamic calibration
and nonlinear integration of diverse features. Inspired by
CSPNet [22], this design enhances gradient aggregation
and feature separation through pathway differentiation. To
mitigate gradient vanishing in deep networks, we propose
a hierarchical backpropagation strategy. By modifying the
interlayer connectivity of the ELAN architecture [23], we
introduce topological shortcuts that link deep computational
units with shallow feature maps. This decouples the
network’s theoretical depth from its gradient propagation
path, preserving the expressive power of deep architectures
while maintaining gradient stability during backpropagation,

improving convergence with fewer iterations.
At the computational unit level, we incorporate a

phase-adaptive dynamic convolution kernel, RepConv
[24], as a core component of the RCCSPELAN module
for feature extraction and integration. During training,
RepConv employs a multi-branch structure with 3x3
convolutions, 1x1 convolutions, and identity mappings to
enhance feature extraction, optimize gradient flow, and
mitigate performance degradation from removing traditional
residual blocks. During inference, RepConv reparameterizes
this multi-branch structure into a single 3x3 convolution,
reducing computational overhead and memory usage. This
design resolves the trade-off between representational
power and computational efficiency in lightweight models,
improving performance without increasing inference
complexity. The RCCSPELAN architecture is depicted in
Figure 3.

D. Hilo Attention

We incorporate the HiLo attention mechanism [25] into
a single-scale Transformer encoder via a novel intra-scale
feature interaction module, which enhances high-level
feature integration and improves facial characteristic
detection. Traditional multi-head self-attention (MSA) layers
apply uniform attention across image patches, failing to
differentiate between high- and low-frequency components,
which results in significant computational overhead when
processing high-resolution images. To address this, HiLo
splits the MSA layer into two branches: (1) A high-frequency
branch that uses local self-attention with high-resolution
feature encoding (Hi-Fi), (2) A low-frequency branch

Fig. 3. RCCSPELAN, CSPNet, Structure diagram of ELAN (a) RCCSPELAN; (b) CSPNet; (c)ELAN
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Fig. 4. Hilo Attention Mechanism Structure Diagram

that applies global attention to downsampled features.
This dual-path design reduces computational complexity,
preserves spatial details, and enhances network performance.
The HiLo architecture is illustrated in Fig. 4.

Nh represents the total number of self-attention heads in
the layer, and α denotes the division ratio for high-frequency
or low-frequency heads.The proposed architecture replaces
the standard multi-head self-attention (MSA) mechanism
with the HiLo attention mechanism, which separates high-
and low-frequency components in feature maps through
dedicated pathways. This frequency separation improves
the capture of discriminative features. The computational
procedure is as follows:

Q = K = V = Flatten(S5) (1)

F5 = Reshape(HiloAttn(Q,K, V )) (2)

Among them, HiloAttn represents the HiLo Attention
Mechanism,S5 represents input features, and ReshapeShape
is used to restore features.input featuresS5.After being
transformed into a one-dimensional vector through Flatten
operation Q,K, V Sent to the AIFI HiLo module for further
processing. The module optimizes the features using the
HiLo mechanism and restores the output to its original
2D form through a reshape operation, denoted as F5.This
operation maintains the spatial resolution of feature maps,
enabling subsequent fusion modules to integrate global
context with localized detail.

The HiLo attention mechanism outperforms traditional
approaches (self-attention, CBAM, Transformer models) by
improving both representational capacity and computational
efficiency. Its frequency-optimized processing facilitates
more effective multi-scale feature integration. In complex
scenarios, HiLo enhances the model’s ability to distinguish
fine-grained details from broader contexts, boosting overall
representational effectiveness.

E. DRBC3 module

The RepC3 module in RT-DETR improves detection
performance through convolutional layer reparameterization

[26]. It uses complex multi-branch topologies during
training, which are simplified into standard convolutional
layers during inference, thus reducing computational
overhead. We propose replacing RepC3 with the
Dilated Reparameterization Block (DRB) to improve
the performance of large-kernel CNNs. The DRB
combines parallel dilated convolutional layers with a
non-dilated large-kernel convolution, improving the
detection of sparse patterns and modeling long-range
pixel dependencies. Dilated convolutions expand receptive
fields by skipping pixels, enhancing representational power
without increasing computational cost. By varying dilation
rates and kernel sizes, DRB enables flexible convolutional
kernel configurations. The effective kernel size for each
dilated layer is given by:

Equivalent Kernel Size = (k − 1)× r + 1 (3)

During training, the DRB module captures fine-grained
local features and learns broader spatial patterns by
parallelizing dilated and large-kernel convolutions. After
training, structural reparameterization merges the dilated
and large-kernel convolutions, minimizing computational
overhead during inference. In the inference phase, dilated
convolutions are converted into equivalent sparse large-kernel
convolutions, removing the computational burden of dilated
convolutions and enhancing inference efficiency. Specifically,
when the kernel size of a dilated convolution is k and the
dilation rate is r, it can be equivalently transformed into
a non-dilated convolution with a larger sparse kernel. The
conversion formula is as follows:

W ′ = conv_transpose2d(W, I, stride = r) (4)

Where W is the original kernel size, W ′ is the transformed
kernel size, and I is the unit kernel (a 1x1 tensor).

This reparameterization process eliminates the
computational overhead of dilated convolutions during
inference, enabling the model to efficiently capture complex
spatial patterns while maintaining a broad receptive
field. It mitigates the high computational cost associated
with stacking multiple small-kernel convolutions in deep
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Fig. 5. DRBC3 module

neural networks, thereby improving overall efficiency. The
operational principle of the DRB module is illustrated in
Figure 5. In this architecture, multiple dilated convolutional
layers operate in parallel, enhancing the feature extraction
capacity of the non-dilated large-kernel convolution. These
dilated convolutions expand the receptive field, enabling
the model to capture sparse patterns without increasing
computational demands. From a parametric perspective,
the outputs of the dilated convolutions are transformed
into an equivalent large, sparse convolutional kernel,
allowing the module to be reparameterized into a single
large-kernel convolution during inference. As shown in
Figure 5, a 9×9 large convolutional kernel is combined
with four dilated convolutional layers to strengthen feature
extraction, which is then reparameterized into a single
large-kernel convolution during inference, effectively
reducing computational complexity and improving inference
speed.

III. EXPERIMENT

A. Experimental environment

The experiments were conducted on a Windows 11
operating system with Python 3.8, CUDA 11.8, and PyTorch
2.0.0 as the development environment and deep learning
framework. The GPU used was an NVIDIA GeForce RTX
3090 (24GB). ResNet18 served as the baseline model, with
an input image size of 640 × 640, a batch size of 16, an initial
learning rate of 0.01, and a total of 100 training epochs.

B. Dataset

This study utilizes two publicly available datasets: (1)
the Yawning and Alertness Detection Dataset (YAWDD)
[27], designed for driver fatigue monitoring, which includes
facial images captured by an in-vehicle rearview mirror
camera featuring drivers of different genders in natural
driving conditions; and (2) the Closed Eye in Wild (CEW)
dataset, developed by Nanjing University of Aeronautics
and Astronautics, which focuses on eye status analysis
using facial samples from diverse age groups, genders,
and ethnicities in a closed-eye state. After data cleaning
and feature alignment, the combined dataset comprises
9,095 high-quality facial images. During preprocessing, each
image was categorized into four classes—open eyes, closed
eyes, mouth open, and mouth closed—using professional
annotation tools. Annotations were initially stored in XML
format, then converted to TXT format, and images were
saved in JPG format to ensure compatibility with standard
deep learning frameworks.Examples from the dataset are
shown in Figure 6.

To enhance the model’s adaptability to a wide range of
environments, several data augmentation techniques were
applied during training. Specifically, horizontal flipping,
random rotation, color jittering, and noise injection were
used to augment 364 images. These augmentations simulate
diverse environmental conditions, thereby improving the
model’s resilience to real-world variations. Horizontal
flipping and random rotation increase tolerance to changes
in object orientation, while color jittering and noise injection
boost robustness to lighting inconsistencies and noise

Fig. 6. Partial images in the dataset
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disturbances. These strategies enable the model to effectively
handle variations in input data, improving its performance
across different scenarios and conditions.

C. Evaluation Metrics

The evaluation metrics used in this paper include Precision
(P), Recall (R), and mean Average Precision (mAP). The
formulas for these calculations are as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

mAP =
1

N

N∑
i=1

APi (7)

In this paper, TP refers to the number of true positives,
where the target is correctly identified; FP represents
false positives, where the target location is recognized but
the target is misclassified; FN indicates false negatives,
where the target is not detected. N represents the total
number of categories, and APi denotes the area under
the precision-recall curve for each class. Additionally,
the improved model is compared with other mainstream
object detection models across several metrics, including the
number of parameters, computational load, and model weight
size, to demonstrate its superior detection performance. The
number of parameters indicates the total count of trainable
parameters in the model, reflecting its complexity. While a
higher parameter count generally improves representational
capacity, it also increases computational and storage
demands. The computational load, measured in FLOPs
(floating-point operations), represents the effort required
during inference, with a lower load leading to faster inference
speeds. Inference time refers to the duration required to
generate predictions after training, typically evaluated as the
time taken to process a single input, expressed in seconds or
milliseconds per frame.

D. Backbone Network Comparison Experiment

To assess the performance improvements from modifying
the RTDETR backbone, we conducted comparative
experiments using several widely adopted backbone
networks as benchmarks. All experiments were performed
under identical conditions and with the same dataset. The
results are summarized in Table I.

In this experiment, we systematically evaluated different
network architectures within the RTDETR framework. The
baseline RTDETR model demonstrated high accuracy but
incurred significant computational overhead. To address this,
we conducted several experiments. Integrating EfficientViT
[28] into RTDETR reduced both the parameter count and
computational load but resulted in a 0.2% decrease in average
precision and an increase in inference time from 8.3 ms to
9.7 ms.

Similarly, incorporating EfficientFormerV2 [29] reduced
parameters and computational demands but yielded only
marginal improvements in average precision and inference
time. Introducing StarNet [30] and MobileNetV4 [31] also
altered the parameter count and computational load, but the
average precision increased by just 0.1%. In comparison to
RCCSPELAN, the performance gains were minimal.

These findings show that integrating RCCSPELAN into
RTDETR strikes an optimal balance between performance
and computational efficiency. Although the computational
load did not decrease significantly, average precision
improved to 98%, and inference time was reduced to
6.6 ms. RCCSPELAN outperformed other architectures,
demonstrating its superior performance in complex detection
tasks. As a result, adopting RCCSPELAN as the RTDETR
backbone significantly enhanced the efficiency of fatigue
detection and feature extraction.

E. Ablation experiment

To assess the impact of the improved modules on the
algorithm’s performance, we conducted ablation experiments
using the same dataset and configuration settings. We
analyzed the trends of various performance metrics. The
results of the experiments are presented in Table II.

The optimized RHD-RTDETR model achieves substantial
reductions in parameter count, computational load, and
inference time while also yielding a significant improvement
in accuracy. Specifically, the stepwise integration of
RCCSPELAN and DRBC3 resulted in a 30.3% and 8.7%
reduction in parameters, respectively, and a 21.9% and
15.3 decrease in computational load. The average precision
increased by 0.3%, and detection speed was markedly
improved, lowering the model’s overall complexity. The
inclusion of the HiLo Attention module had minimal impact
on parameter count and computational load but notably
increased the average precision from 97.7% to 98.3%,
reflecting enhanced performance. Replacing the RTDETR
backbone with RCCSPELAN and DRBC3 reduced the
parameter count from 19.88 million to 12.12 million,

TABLE I
COMPARISON EXPERIMENT RESULTS OF BACKBONE NETWORK

Model mAP@0.5/% Params/M GFLOPs Time/ms

RTDETR 97.7 19.88 57 8.3

RTDETR + EfficientViT 97.5 10.70 27.2 9.7

RTDETR + StarNet 97.8 11.21 29.7 7

RTDETR+EfficientFormerv2 97.7 11.80 29.5 8.3

RTDETR + mobilenetv4 97.8 11.31 39.5 6.4

RTDETR+ RCCSPELAN 98 13.85 44.5 6.6
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TABLE II
RESULTS OF THE ABLATION EXPERIMENT

RCCSPELAN Hilo DRBC3 Precision/% Recall/% mAP@0.5/% Params/M GFLOPs Time/ms

Baseline 98.4 97.5 97.7 19.88 57 8.3

✓ 98.2 97.8 98 13.85 44.5 6.6

✓ 98.5 98.3 98.3 19.84 57.1 6.8

✓ 98.5 98 98 18.15 48.3 6.9

✓ ✓ 99 97.5 98 13.81 44.6 6.2

✓ ✓ 98.5 98.6 98.6 12.12 36.2 6.3

✓ ✓ 99.1 97.3 97.8 18.11 48.4 6.6

✓ ✓ ✓ 99 97.7 98.3 12.09 35.9 6

a 39% decrease, and the computational load from 57
gigabytes to 35.8 gigabytes, a 37.2% reduction. This
resulted in a 0.9% improvement in average precision,
reaching a value of 98.6%. When RCCSPELAN, HiLo
Attention, and DRBC3 were integrated, the RHD-RTDETR
model achieved 12.09M parameters (60.8% of the original
RTDETR model) and a computational load of 35.9G
(63% of the baseline model). Inference time decreased by
2.3 ms, and detection accuracy increased by 0.6%, with
average precision reaching 98.3%. These findings confirm
that RHD-RTDETR effectively reduces model complexity
while enhancing computational efficiency. The ablation
study, performed under consistent experimental conditions,
highlights the individual contributions of each module
to overall performance. The incremental improvements
in accuracy and reductions in complexity through the
integration of these modules demonstrate the effectiveness
of the architectural components. The analysis of parameter
reduction, computational load, and detection accuracy
indicates that the proposed RHD-RTDETR model strikes a
well-balanced trade-off between performance and efficiency.

Despite substantial reductions in parameters and
computational load, RHD-RTDETR retains impressive

detection accuracy, confirming the effectiveness of the
proposed optimization strategy. The ablation study results
indicate that combining the RCCSPELAN, HiLo Attention,
and DRBC3 modules not only improves detection accuracy
but also enhances computational efficiency and reduces
inference time. This optimization achieves a balanced
trade-off between accuracy and speed, demonstrating that
module integration can significantly enhance the performance
of object detection models. Moreover, RHD-RTDETR
maintains high accuracy even with reduced parameters and
computational resources, further validating the effectiveness
of the optimization. As shown in Figure 7, both RTDETR
and RHD-RTDETR exhibit rapid accuracy improvements
during the early training stages. While RTDETR shows a
slight increase initially, RHD-RTDETR ultimately surpasses
it in accuracy. Regarding average precision, RTDETR
experiences a sharp rise before stabilizing, whereas
RHD-RTDETR achieves a higher, more stable final value.
As a lightweight version of RTDETR, RHD-RTDETR
reduces computational costs while preserving superior
accuracy and performance, demonstrating its robustness and
practical value without compromising efficiency.

Fig. 7. Comparison diagram of RTDETR and RHD-RTDETR models

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3717-3726

 
______________________________________________________________________________________ 



F. Generalization experiment

To assess the model’s generalization capability, we tested
it using a driving behavior dataset comprising 10,760
images across nine categories, including drinking water,
talking on the phone, and chatting. The addition of more
categories increased computational complexity; however,
RHD-RTDETR effectively minimized the computational load
while maintaining high accuracy, highlighting its strong
generalization ability.

As shown in Table III, RHD-RTDETR retains high
precision and recall even with the expanded categories.
The average precision only slightly dropped to 96.9%,
while computational load and inference time were
well-controlled. Despite the increase in categories and
samples, RHD-RTDETR’s performance remained on par
with the baseline RTDETR model, demonstrating its
robustness and adaptability.

These results confirm that RHD-RTDETR reduces
computational complexity through architectural
optimizations with only a minimal loss in accuracy.
The model’s performance indicates that, even with a more
complex dataset, RHD-RTDETR can maintain efficient and
stable results in more challenging tasks, validating its ability
to generalize in dynamic environments.

G. Results and Analysis

In this study, we evaluated the performance and
competitiveness of the RHD-RTDETR model by comparing
it against various state-of-the-art methods under identical
experimental conditions. The models included in the
comparison are Faster R-CNN, SSD, the RTDETR series,
and the YOLO series (encompassing recent versions such as
YOLOv10 and YOLOv11), all of which represent leading
approaches in object detection. The experimental results are
presented in Table IV.

RHD-RTDETR significantly outperforms Faster R-CNN
in both detection accuracy and average precision.
While Faster R-CNN is known for high detection
accuracy, its large parameter size creates bottlenecks
in computational efficiency and resource consumption.
In contrast, RHD-RTDETR not only improves detection
accuracy from 84.3% to 99% but also increases average
precision from 83.5% to 98.1%. Its lightweight design
enhances accuracy while reducing both parameter count and
computational complexity, achieving an optimal balance
between performance and resource consumption. Compared
to the SSD model, RHD-RTDETR shows superior detection
accuracy and precision, with improvements of 11.1% and
10.8%, respectively. Despite SSD having 26.3M parameters
and a computational complexity of 62.7G, RHD-RTDETR,
with only 12.08M parameters and a complexity of 35.9G,
offers clear advantages in computational efficiency and
resource utilization, demonstrating its high efficiency and
lightweight nature.

When compared to the RTDETR series (e.g.,
RTDETR-R34, RTDETR-R50), RHD-RTDETR maintains
an edge in both accuracy and computational efficiency.
While RTDETR models perform well in detection
accuracy, RHD-RTDETR achieves better performance
with fewer resources, thanks to its innovative design.
This advantage is especially evident in complex scenarios,
where RHD-RTDETR demonstrates greater robustness
and precision. With only 12.08M parameters and 35.9G
of computational complexity, RHD-RTDETR significantly
reduces resource consumption while improving accuracy
compared to RTDETR-R50.

RHD-RTDETR also outperforms the YOLO series,
including YOLOv5, YOLOv8, and YOLOv11. Although
some YOLO models perform well in terms of detection
accuracy and average precision, RHD-RTDETR excels in
accuracy, particularly in comparison with YOLOv5 and

TABLE III
GENERALIZATION EXPERIMENT RESULTS

Model Precision/% Recall/% mAP@0.5/% Params/M GFLOPs Time/ms

RTDETR 97.7 97.8 97 19.88 57 8.2

RHD-RTDETR 97.7 97.9 96.9 12.09 36 6

TABLE IV
COMPARATIVE EXPERIMENTAL RESULTS

Model Precision/% mAP50/% Params/M GFLOPs

Faster RCNN 84.3 83.5 137.1 369.2

SSD 87.9 87.3 26.30 62.7

RTDETR-R18 98.4 97.7 19.88 57

RTDETR-R34 98.8 98.2 31.11 88.8

RTDETR-R50 98.6 97.9 41.96 129.6

yolov5 98.3 98.6 25.05 64.0

yolov8 98.7 98.4 25.84 78.7

yolov9 98.2 98.1 20.02 76.5

yolov10 97.5 98.5 16.46 63.4

yolov11 98.5 98.7 20.03 67.7

RHD-RTDETR (ours) 99 98.3 12.08 35.9
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(a) RTDETR

(b) RHD-RTDETR

Fig. 8. The visual comparison chart between RTDETR and RHD-RTDETR.

YOLOv8. RHD-RTDETR not only offers higher accuracy
and precision but also demonstrates superior computational
efficiency and resource utilization. While certain YOLO
models may slightly outperform RHD-RTDETR in average
precision, the latter delivers better overall performance
in practical applications due to its stability and lower
computational demands.

As shown in Figure 8, the model performs well under
both regular and low-light conditions, significantly reducing
parameters while maintaining high detection accuracy across
most categories. Although a slight drop in accuracy is
observed in some categories, the algorithm continues to
perform effectively in real-world scenarios, underscoring its
practical value.

In summary, RHD-RTDETR outperforms Faster R-CNN,
SSD, the RTDETR series, and the YOLO series in terms
of accuracy, parameter count, and computational efficiency.
By combining high accuracy with a low parameter count and
reduced computational complexity, RHD-RTDETR addresses
the limitations of traditional models in terms of resource
consumption, offering exceptional performance, particularly
in scenarios that demand stability and efficiency.

IV. CONCLUSIONS

This paper introduces the enhanced RHD-RTDETR model,
which incorporates several innovations to achieve an optimal
balance between computational efficiency and accuracy in
edge computing environments. First, RCCSPELAN enhances
the model by integrating cross-stage gradient optimization
with dynamic feature reconstruction, thereby reducing
computational complexity while maintaining high accuracy.
This results in a lightweight model with faster inference
times. Additionally, the use of dual-modal feature processing
and dynamic convolution kernel design further enhances
performance and real-time responsiveness. The HiLo
attention mechanism optimizes the traditional Transformer
encoder by splitting the MSA (Multi-Head Self-Attention)
layer into high- and low-frequency branches. This reduces

computational overhead while enhancing the model’s ability
to capture facial features and improve multi-scale feature
interactions. Finally, the DRBC3 module provides a more
efficient alternative to the RepC3 module in RTDETR.
By improving feature representation through multi-branch
convolution and pooling operations and reparameterizing
these branches into standard convolution layers during
inference, DRBC3 reduces unnecessary computational
overhead while delivering richer feature representation
and faster inference. Through these innovations, the
RHD-RTDETR model significantly improves both
computational efficiency and detection accuracy, showing
superior performance in object detection tasks. The model
demonstrates strong potential for real-world applications,
and future work will focus on further optimizations to
improve performance in more complex scenarios.
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