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Abstract—In recent years, visual transformers (ViTs) have
demonstrated considerable progress in image classification.
However, they continue to face notable challenges in tasks
such as high-resolution remote sensing image segmentation and
spatiotemporal video understanding. A primary limitation lies
in the self-attention mechanism inherent to the Transformer ar-
chitecture, which tends to emphasize low-frequency information
while neglecting high-frequency components. This bias impairs
the detection and segmentation of small objects, particularly
in the context of remote sensing. To address these limitations,
we propose enhancements to the multi-scale visual transformer
(MViT) architecture. First, we incorporate a generative adver-
sarial network framework based on Wasserstein GAN with
gradient penalty (WGAN-GP) to improve the segmentation
of small objects. This approach introduces a discriminator
loss that encourages the model to focus more effectively on
small-scale features. Second, we design a loss function that
leverages frequency-domain image characteristics to mitigate
the loss of fine-grained details during training. Furthermore,
we integrate the optimized MViT architecture with the stan-
dard dense prediction framework, SegFormer, to enhance
segmentation accuracy on complex remote sensing images.
Experimental results demonstrate that our proposed model,
FGAMVIT, significantly improves the ability to capture multi-
scale and complex features while maintaining a favourable
trade-off between computational efficiency and segmentation
performance. These enhancements offer a more robust solution
for applying Transformer-based models to remote sensing image
segmentation tasks.

Index Terms—Image Segmentation, Deep Learning, Vision
Transformer, Self-Attention

I. INTRODUCTION

ESIGNING effective architectures for remote sensing

image segmentation has long been a challenging task
due to the high spatial resolution, complex textures, and
varying object scales present in such data [, [2]. Tradi-
tional convolutional neural network (CNN)-based models,
such as ResNet [3 4] and U-Net [SH7], have been widely
adopted due to their simplicity and computational efficiency.
However, recent advances in Vision Transformers (ViTs)
have demonstrated remarkable performance across diverse
vision tasks, challenging the long-standing dominance of
Convolutional Neural Networks (CNNs) [8H10]. The original
ViT architecture, although designed for image classification,
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has since been adapted and extended to meet the specific
demands of various visual tasks, including dense prediction
and temporal modelling.

Despite their success in image classification, ViTs face
significant hurdles in high-resolution remote sensing image
segmentation and spatiotemporal video understanding [11-
13]]. Remote sensing images often contain intricate land cover
patterns, multiple object categories, and diverse spatial con-
texts, all captured at very high resolutions [[14]. These factors
introduce substantial computational and memory burdens,
primarily because the self-attention mechanism in standard
Transformers scales quadratically with the input resolution.
As a result, applying vanilla ViT models directly to large-
scale inputs becomes infeasible without modification. To
address these issues, a variety of architectural strategies
have been proposed, among which two prominent direc-
tions have emerged: window-based attention and pooled
multi-scale attention. The first strategy involves window-
based attention mechanisms, exemplified by the Swin Trans-
former [[15, [16]. Swin Transformer introduces a hierarchical
structure in which self-attention is computed within non-
overlapping local windows. To expand the receptive field and
capture long-range dependencies, it employs a shifted win-
dow strategy across layers. This hierarchical design reduces
the computational cost while preserving the model’s ability
to learn both local and contextual information. Consequently,
the Swin Transformer has demonstrated strong performance
in remote sensing tasks, including land cover classification,
object detection, and semantic segmentation. However, its
localized attention design can still limit its capacity to capture
truly global contextual cues, mainly when the semantic
meaning of an object is distributed across widely separated
regions in high-resolution scenes.

An alternative and promising direction is pooled or hier-
archical attention, as demonstrated by the Multiscale Vision
Transformer (MViT) [17, [18]]. MViT introduces a multiscale
tokenization and attention mechanism that progressively
downsamples and aggregates feature representations across
layers. This hierarchical fusion of spatial information allows
the model to capture both fine-grained local details and high-
level global semantics. MViT is particularly well-suited to
processing remote sensing data, as it can simultaneously
handle objects of varying sizes and leverage contextual
dependencies at different spatial resolutions. By integrating
multiscale features into the attention mechanism, MViT
has proven effective in fine-grained segmentation and small
object detection, outperforming traditional CNNs in several
benchmarks.

In this study, we enhance the MViT architecture better to

Volume 33, Issue 9, September 2025, Pages 3727-3738



Engineering Letters

meet the challenges of remote sensing image segmentation.
The proposed improvements are as follows:

1) Integration of a Generative Adversarial Network Frame-
work (WGAN-GP) [19]]: Conventional loss functions such as
L1, L2, or Binary Cross Entropy (BCE) often fail to capture
the distributional characteristics of small objects, especially
when such targets are sparse or occupy only a small fraction
of the image. These losses tend to focus disproportionately on
significant regions, such as the background, leading to subop-
timal segmentation performance. To address this, we incorpo-
rate a Wasserstein GAN with gradient penalty (WGAN-GP)
as an auxiliary supervision mechanism. The discriminator
learns to distinguish between the ground truth and the
predicted segmentation maps, encouraging the generator to
produce more realistic and structurally coherent outputs. This
adversarial learning framework provides smoother gradient
updates and promotes finer attention to small-scale regions,
thereby enhancing the model’s ability to recover small target
structures.

2) Frequency-Domain Loss Function: Remote sensing
images often exhibit a spectral imbalance, where low-
frequency components dominate the spatial distribution, and
high-frequency components—such as edges, boundaries, and
small objects—are sparse yet critical. To counteract the
model’s inherent bias toward learning low-frequency content,
we propose a frequency-aware loss based on the 2D Fourier
transform. This loss penalizes discrepancies in the spectral
domain, with a focus on preserving high-frequency informa-
tion relevant to object boundaries and delicate textures. By
adaptively down-weighting the loss contribution of easy-to-
synthesise (low-frequency) components and emphasising the
reconstruction of hard-to-synthesise (high-frequency) ones,
the proposed loss acts as a complement to traditional pixel-
wise spatial losses. It effectively preserves the structural
details essential for the precise segmentation of small and
complex targets.

3) Integration with SegFormer: We incorporate our opti-
mized MVIT into the SegFormer dense prediction framework
[20], further enhancing its capability to handle complex
segmentation tasks in remote sensing images. Experimental
results demonstrate that these optimizations enhance the
model’s ability to handle multi-scale and intricate features,
resulting in substantial performance gains in remote sensing
image segmentation. By combining the improved MViT with
SegFormer, our approach achieves a strong balance between
computational efficiency and segmentation accuracy, offering
a powerful solution for Transformer-based models in remote
sensing applications.

II. RELATED WORK

A. From Convolutional Networks to Vision Transformers in
Remote Sensing Image Segmentation

Convolutional Neural Networks (CNNs) have long been
the foundation of remote sensing image segmentation due
to their ability to extract spatial features through local
convolution operations in a hierarchical manner [21} 22]. Ar-
chitectures such as U-Net [23], DeepLab [24], and ResNet-
based backbones [25] have been widely adopted in this
domain, primarily due to their efficiency, simplicity, and firm
performance on various pixel-wise prediction tasks. Their

capacity to model local patterns and semantic hierarchies
makes them effective for extracting texture, edges, and mid-
level features. However, CNNs inherently suffer from limited
receptive fields and inductive biases such as translation
invariance, which constrain their ability to capture long-range
dependencies and global contextual relationships—critical
for understanding complex and large-scale remote sensing
scenes.

To overcome these limitations, researchers have increas-
ingly turned to Transformer-based models, initially devel-
oped for natural language processing [26], and adapted
them to vision tasks. Vision Transformers (ViTs) [27] has
introduced a paradigm shift by replacing convolutions with
self-attention mechanisms, enabling models to capture global
dependencies across an entire image. In the ViT architecture,
an image is divided into fixed-size patches, each of which
is linearly embedded and treated as a token in a sequence.
This sequence is then processed by Transformer layers that
learn relationships between all patches, regardless of their
spatial proximity. This approach allows ViTs to model long-
range interactions and complex spatial dependencies more
effectively than CNNs.

Despite their success in image classification, the applica-
tion of ViTs to high-resolution remote sensing images intro-
duces new challenges. A key issue lies in the computational
burden of the self-attention mechanism, whose complexity
scales quadratically with the number of input tokens [28| 29].
In high-resolution tasks, where the number of patches can
be huge, this results in substantial memory and processing
demands. Moreover, ViTs lack the inductive biases of CNNs,
which can hinder learning in data-scarce regimes typical of
remote sensing applications.

To address these drawbacks, several hybrid or hierarchical
Transformer architectures have been proposed. For instance,
the Swin Transformer employs a local window-based self-
attention strategy with hierarchical feature aggregation, sig-
nificantly reducing the computational cost while preserving
the ability to capture global patterns through shifted windows
[30]. Similarly, models like the Pyramid Vision Transformer
(PVT) and SegFormer integrate CNN-like multi-scale feature
extraction with Transformer-based global context modelling,
offering a favourable balance between efficiency and rep-
resentational power [31]. These developments have signifi-
cantly advanced the state-of-the-art in remote sensing image
segmentation, enabling Transformer-based models to handle
large-scale and complex scenes more effectively.

B. Multi-Scale Vision Transformer (MVIT)

The Multi-Scale Vision Transformer (MViT) was proposed
to overcome the inherent limitations of the original Vision
Transformer (ViT), specifically its inability to process multi-
scale information and its high computational complexity.
While ViT treats image patches uniformly and lacks an
explicit mechanism for hierarchical feature extraction, MViT
introduces a progressive token pooling and multi-scale at-
tention strategy, allowing the network to learn visual repre-
sentations at different resolutions. This hierarchical design
enables MViT to capture both fine-grained local details
and coarse global context, making it well-suited for visual
tasks involving objects of varying sizes and complex spatial
relationships.
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In the MViT architecture, tokens are progressively down-
sampled through pooling operations across layers, which
reduces the computational burden while preserving essen-
tial spatial structure. Simultaneously, multi-scale attention
modules enable information exchange across different res-
olutions, thereby enhancing the model’s capability to learn
both high-level semantics and low-level textures. These
properties are particularly advantageous for remote sensing
image segmentation, where scenes often contain small, scat-
tered objects embedded within large-scale and heterogeneous
backgrounds.

Despite its strengths, MVIT still faces challenges when
applied to high-resolution remote sensing images. The pri-
mary issue lies in accurately segmenting small objects and
preserving fine-grained details, which can be lost during
the progressive pooling and token downsampling opera-
tions. Additionally, while the model captures multi-scale
information, it does not explicitly emphasise difficult-to-
learn components, such as high-frequency textures or small
structures, which often carry critical semantic information in
remote sensing tasks.

C. SegFormer

SegFormer is a Transformer-based architecture designed
specifically for image segmentation tasks. It effectively com-
bines the strengths of models like PVT, which excel at
multi-scale feature extraction, with the global dependency
modelling capabilities of Transformers. SegFormer employs
an efficient self-attention mechanism and a simplified de-
coder, achieving an optimal balance between computational
efficiency and segmentation accuracy. This design enables
the model to produce high-quality segmentation results while
maintaining a low computational cost.SegFormer has demon-
strated outstanding performance across a range of semantic
segmentation tasks, highlighting its versatility and robustness
in handling complex scenarios. Its ability to process intricate
visual details and diverse image structures makes it especially
suited for challenging applications, such as remote sensing
image segmentation. With its efficiency and scalability, Seg-
Former is a powerful solution for tackling the complexities
of segmenting high-resolution, multi-scale remote sensing
images.

III. FGAMVIT ARCHITECTURE

As illustrated in Figure 1, the FGAMVIT architecture
consists of two primary components: a generator network and
a discriminator network. The generator integrates the Multi-
Scale Vision Transformer (MViT) with the SegFormer frame-
work to perform remote sensing image segmentation (Figure
1.A), while the discriminator network evaluates the authen-
ticity of the segmentation output by distinguishing between
authentic segmentation masks and those produced by the
generator (Figure 1.E). The two networks are trained in an
adversarial manner: the generator minimises the Wasserstein
distance [32] between the real and generated segmentation
distributions. At the same time, the discriminator seeks
to maximise this distance, thereby providing adversarial
feedback that guides the generator toward producing more
realistic and accurate segmentation maps.

A. Generative Component

The generator, based on a Transformer backbone, consti-
tutes the core of the FGAMVIT architecture [26]. Transform-
ers have demonstrated strong capabilities in modelling long-
range dependencies within sequences, which has contributed
to their widespread success across a range of vision tasks
[28]]. However, the conventional multi-head self-attention
mechanism used in Transformers incurs significant computa-
tional and memory costs. The complexity scales quadratically
with input size, making the architecture less feasible for
large-scale, high-resolution remote sensing imagery.

To address this limitation, FGAMViT incorporates pooling
attention mechanisms—a design that restricts the attention
range to reduce computational burden while preserving es-
sential local and global dependencies. This enables the effi-
cient modelling of complex spatial patterns in remote sensing
images without a substantial trade-off in performance.

As depicted in Figure 1.A, the overall structure of the
generator follows the SegFormer design paradigm, which
includes a hierarchical encoder-decoder architecture. The
encoder comprises four MViT blocks, each tasked with
nonlinearly mapping the input remote-sensing image into
feature representations of varying spatial resolutions. Each
MViT block integrates three critical components:

1) Pooling Self-Attention Module: a modified attention
mechanism that balances efficiency and accuracy;

2) Mix Feed-Forward Network (Mix-FFN): responsible
for feature transformation;

3) Overlap Patch Merging: enabling hierarchical feature
integration.

The Pooling Self-Attention module, as illustrated in Figure
1.D, is further augmented with residual pooling connections.
After pooling operations, residual connections are introduced
to combine the pooled output with the original feature
map. This fusion preserves high-frequency and fine-grained
details that are typically lost during downsampling, thereby
enriching the representation passed to subsequent layers. This
mechanism not only retains essential spatial cues but also
enhances the model’s ability to delineate object boundaries
and recognize subtle texture variations—key requirements for
remote sensing segmentation tasks.

The process begins with input normalization (Equation 1),
where X represents the raw input features and X’ denotes
the normalized features. This step ensures that the input is
appropriately scaled for the subsequent operations. Following
this, a linear transformation is applied to the normalised
features to produce the query (Q), key (K), and value (V)
vectors, as shown in Equation (2). These transformations are
performed using specific weight matrices Wg, Wi, and Wy
for each respective vector. The goal is to enable the model
to capture various aspects of the input features, which are
crucial for computing the attention scores. To reduce com-
putational complexity, the query, key, and value vectors are
combined in the next step, as shown in Equation (3). Pooling
these vectors helps decrease the overall computational load,
especially when working with high-resolution data, while
still retaining enough information for meaningful attention
calculations.

X = Norm(X) 1)

Q=WoX, K=WgX, V=WyX )
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Fig. 1. Overall architecture of FGAMViT.

Qpool = Pool(Q), Kpool = Pool(K), Vpeor = Pool(V)
3)
Next, relative positional embeddings are computed and
integrated into the attention scores Equation (4). The em-
beddings E(i,j) and F(i,j) represent the relative positions
of elements ¢ and j in the input sequence. These embeddings
enable the model to be more robust to positional shifts and
enhance its spatial awareness, making it more adaptable to
changes in object locations within the image. The attention
weights are then determined using the Softmax function,
which normalizes the attention scores across all elements.
These normalised weights are used to weight the value
vectors, which are then summed to produce the self-attention
output (Equation 5). This allows the model to focus on the
most relevant information based on the computed attention.
To retain important features from the original input, a resid-
ual connection is introduced by adding the original input
features (before pooling) to the self-attention output (after
pooling), as shown in Equation (6). This residual link helps
preserve crucial information lost due to pooling, ensuring
better feature retention and aiding in maintaining the integrity
of the original input. Finally, the output from the residual
connection undergoes a linear transformation, as specified
in Equation (7), using the transformation matrix Wy, which
generates the model’s final output. This output is then passed
to subsequent layers or operations.

T
o onol,zKpool,j

Q5 = Softmax(Aij) (5)

7 = Zaiijoohj (6)
J

Output = WOZres (7)

By combining the standard self-attention mechanism with
pooling operations, residual connections, and relative posi-
tional embeddings, this process significantly improves the
model’s ability to capture and maintain positional infor-
mation. It also ensures that detailed features are preserved
while reducing computational complexity, making the model
more efficient and effective, particularly for tasks such as
remote sensing image segmentation, where both accuracy
and computational efficiency are crucial.

This architectural refinement enables the generator to
strike a balance between computational efficiency and seg-
mentation accuracy, allowing it to process high-resolution
imagery effectively. By minimizing the degradation of critical
spatial features, the generator can more precisely capture
complex structures in remote sensing scenes, ultimately
contributing to superior segmentation performance.

B. Discriminative Component

To more effectively quantify the discrepancy between the
predicted segmentation map and the corresponding ground
truth, we design a discriminator network inspired by the
Patch-GAN architecture [33]. This design enables the net-
work to focus on local-level consistency rather than global
realism, which is more suitable for segmentation tasks.
The discriminator maps the input—either real or generated
segmentation results—to a high-dimensional logit represen-
tation, providing spatially localized feedback to guide the
generator in refining segmentation quality.

As illustrated in Figure 1.E, the discriminator receives two
types of inputs: (1) a concatenation of the original remote
sensing image and the generator-produced segmentation out-
put used to compute pseudo logits and (2) a concatenation
of the original input image and the corresponding ground
truth segmentation map, used to compute real logits. These
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two inputs are passed through the same network structure to
evaluate their authenticity.

The architecture of the discriminator consists of a series of
convolutional blocks interleaved with pooling and activation
operations. Each convolutional block includes A 2D convo-
lutional layer for feature extraction, a 2 X 2 max pooling
operation for spatial downsampling, and a ReLU activation
function for non-linearity.

Initially, both inputs are processed by a convolutional layer
that projects them into a feature space of size 128 x 128 x 64.
This is followed by repeated downsampling and feature
refinement stages. Specifically, the input is progressively
reduced through four such convolution-pooling-activation
cycles, ultimately resulting in feature maps of dimension
16 x 16 x 64. Finally, a 1 x 1 2D convolution is applied
to compress the feature map into a logits tensor of size
16 x 16 x 1, where each value represents the discriminator’s
confidence in the authenticity of a corresponding spatial
patch in the segmentation map.

During adversarial training, the discriminator serves a dual
role. The pseudo logits derived from generated segmentation
outputs are used to update the generator network via the
adversarial loss, encouraging it to produce outputs that
are increasingly indistinguishable from real segmentations.
Simultaneously, the discriminator is updated using both the
real and fake logits, thereby enhancing its ability to dis-
tinguish authentic segmentation maps from synthetic ones.
This adversarial interaction strengthens the generator’s ability
to produce fine-grained, spatially consistent segmentations
and enhances the discriminator’s sensitivity to structural
inconsistencies—critical for high-resolution remote sensing
image analysis.

C. Training Process of FGAMViT

The loss function used for training FGAMVIT consists
of two components: the generator loss Ls and the dis-
criminator loss Lp. The generator loss combines pixel-
level reconstruction, adversarial supervision, and frequency-
domain alignment. It is defined as:

Le =By x [(G(X) = Y)?] + aEx [D(G(X), X)] + BLr
)
The first term is the pixel-wise mean square error (MSE)
between the generated segmentation output, G(X), and the
ground truth label, Y, which ensures spatial accuracy in
segmentation. The second term, weighted by the hyperpa-
rameter «, represents the adversarial loss contributed by the
discriminator’s evaluation of the generated segmentation. The
third term, L, represents the frequency-domain loss, which
is described as follows.

a) Frequency-Domain Loss Lr: To enhance the preser-
vation of fine-grained details and high-frequency compo-
nents, which are often underrepresented in remote sensing
segmentation, we introduce a loss term based on the 2D
Discrete Fourier Transform (DFT). Let F(-) denote the 2D
DFT. We define:

G(“ﬁv) = ]:(G(X))’ f/(u,v) = ]:<Y) )

Where G(u,v) and Y (u, v) are the frequency representa-
tions of the generated and real segmentation maps, respec-
tively. The frequency loss is then calculated as:

| AW R R 5
Lp=—— : -Y 1
F HW uz::lvz::lw(ua U) G(U,’U) (u,v) ( 0)
with a frequency weighting function defined by:
w(u,v) = log(1 + u® + v?) 11

This weighting emphasizes higher-frequency components
(e.g., edges, contours), promoting sharper predictions while
maintaining training stability.

b) Discriminator Loss Lp: The discriminator is trained
to distinguish between real and generated segmentations.
Its loss function follows the WGAN-GP formulation and is
defined as:

Lp =Ex [D(G(X),X)] = Ev,x [D(Y, X)]
+3 (5 [|[ven0] | -1)

Where X = eX + (1 — £)G(X) is a linear interpolation
between the real and generated inputs, and the third term
enforces the gradient penalty to stabilize adversarial training,
following [19]. Here, 3 is the weight of the penalty term, and
¢ is sampled from a uniform distribution, fixed to 0.5 in our
experiments.

¢) Training Details: FGAMVIT is trained for 50 epochs
with a batch size of 4. The generator and discriminator
use learning rates of ¢ = 2 X 107% and ¢ = 1 x 1074,
respectively. The generator is optimized using AdamW, while
the discriminator uses RMSprop. The coefficients «, 8 and
~ are set to —1 x 1073, =5 x 10~* and 10, respectively. All
experiments are accelerated using an NVIDIA RTX 3090
graphics processing unit (GPU).

12)

IV. EXPERIMENTAL SETTING
A. Datasets

To train and evaluate the FGAMVIT architecture, we
utilize four publicly available remote sensing datasets com-
monly used in building segmentation research: the INRIA
Aerial Image Labeling Dataset (IAIL) [34], SpaceNet [35],
DeepGlobe Building Extraction Dataset (DBE) [36], and
WHU Building Dataset (WHUB) [37]. These datasets pro-
vide high-resolution imagery with pixel-level annotations,
enabling robust training and benchmarking of segmentation
models.

a) INRIA Aerial Image Labeling Dataset (IAIL): The
TAIL dataset consists of 180 high-resolution aerial images,
each with a resolution of 5120 x 5120 pixels and a spatial
resolution of 0.3 meters. The dataset encompasses urban
and suburban scenes from cities including Austin, Chicago,
and Vienna. Each pixel is labelled as either "building" or
"non-building," making it suitable for binary segmentation
tasks. For model training, we divide the dataset into 60% for
training, 20% for validation, and 20% for testing. All images
are tiled into patches of 512 x 512 pixels with 50% overlap
and are normalised to have a zero mean and unit variance.

Volume 33, Issue 9, September 2025, Pages 3727-3738



Engineering Letters

b) SpaceNet Dataset: The SpaceNet dataset provides
high-resolution satellite images (0.3-0.5m GSD) from sev-
eral global cities with dense, diverse urban structures. Each
image includes pixel-wise annotations of the building foot-
print. We utilise the SpaceNet Building Detection Chal-
lenge subset and apply a 70%-15%-15% split for training,
validation, and testing, respectively. Images are resized to
512 x 512 patches and augmented using random rotation,
horizontal flipping, and contrast normalization to enhance
generalization.

¢) DeepGlobe Building Extraction Dataset (DBE): The
DBE dataset includes 650 x 650 pixel satellite image patches
with 0.5m resolution, covering urban, suburban, and rural
areas. Each patch is annotated with building contours. We
partition the dataset into 70% training, 15% validation, and
15% testing sets. Preprocessing includes resizing to 512 X
512, histogram equalization, and data augmentation (random
cropping, flipping, and brightness adjustment).

d) WHU Building Dataset (WHUB): The WHUB
dataset comprises 30,000 aerial images spanning 450 square
kilometres across various urban and rural areas in China.
The spatial resolution ranges from 0.3 m to 0.5 m. Each
pixel is labelled as either "building" or "non-building." For
this dataset, we follow the standard protocol and use 80% of
the data for training, 10% for validation, and 10% for testing.
Each image is divided into 512 x 512 tiles, with normalisation
and shadow removal preprocessing applied.

e) Preprocessing and Augmentation: All datasets are
unified into a common resolution of 512 x 512 pixels during
preprocessing. We perform standardisation (zero mean, unit
variance) and apply consistent data augmentation strategies,
including random flipping, rotation (by 90° increments),
brightness and contrast adjustments, and Gaussian noise
addition. This improves model robustness to diverse imaging
conditions.

B. Evaluation Metrics

To comprehensively assess the performance of FGAMViT
on building segmentation tasks, we employ a set of widely
used quantitative metrics that evaluate both segmentation
accuracy and computational efficiency.

a) Mean Intersection over Union (mloU): mloU is the
primary metric for segmentation quality, defined as the ratio
of the intersection to the union of the predicted and ground
truth masks:

B TP
TP+ FP+FN’

1 &

IoU mloU = ;IOUZ- (13)
Where C' is the number of classes (here C' = 2 for building
and non-building), and TP, FP, and FN denote true
positives, false positives, and false negatives, respectively.

b) FI Score: The F1 score balances precision and re-
call, which is particularly important for imbalanced datasets
with sparse building regions:

2 Precision - Recall

F1 =
Precision + Recall ’
TP
Precision = ——— 14
recision TP+ FP’ (14)
Recall e
ecall = ——————
TP+ FN

c) Dice Coefficient: The Dice coefficient measures the
overlap between prediction and ground truth and is particu-
larly effective for evaluating segmentation shapes:

2TP
2TP+ FP+ FN

d) Pixel Accuracy: Pixel accuracy is defined as the ratio

of correctly classified pixels to the total number of pixels:

TP+TN
TP+TN+FP+FN
Although intuitive, this metric may be biased in scenes where
building pixels occupy a small fraction of the total image
area.

e) Floating Point Operations (FLOPs): FLOPs indicate
the number of floating point operations required during in-
ference. While not directly related to segmentation accuracy,
lower FLOPs indicate better computational efficiency, which
is crucial for resource-constrained environments.

f) Frames Per Second (FPS): FPS measures real-time
inference speed, defined as the number of image frames
processed per second. High frame rates (FPS) are vital for
time-sensitive applications, such as drone surveillance and
disaster monitoring.

Among the above, mloU, F1 Score, Dice Coefficient, and
Pixel Accuracy range from O to 1 (reported as percentages),
with higher values indicating better segmentation perfor-
mance. FLOPs should be minimised to reduce computational
cost, while FPS should be maximised to ensure real-time per-
formance. These complementary metrics provide a balanced
evaluation of segmentation accuracy and model efficiency.

Dice =

(15)

Pixel Accuracy =

(16)

C. Baseline Models

For remote sensing image segmentation tasks, convolu-
tional neural network (CNN) architectures such as U-Net,
DenseUNet [38]], ResUNet [39], and DeepLabV3+ [40] offer
distinct advantages in extracting building footprints and
handling complex background environments. Additionally,
Transformer-based models like SegFormer also provide sig-
nificant benefits. The following provides a brief overview of
the baseline models evaluated in this study:

a) U-Net: U-Net is a widely adopted encoder-decoder
architecture developed initially for biomedical image seg-
mentation. It has since become a foundational model in re-
mote sensing applications due to its ability to capture spatial
hierarchies and recover fine details. The skip connections
between the encoder and decoder enable precise localisation,
making U-Net effective for segmenting buildings with well-
defined boundaries, even in heterogeneous scenes.

b) U-Net++: U-Net++ is an enhanced variant of the
original U-Net architecture, designed to improve the accuracy
and efficiency of image segmentation tasks through a nested
and dense skip connection structure. It introduces inter-
mediate convolutional layers between encoder and decoder
pathways to reduce the semantic gap and improve feature
fusion. This architectural refinement enables U-Net++ to
capture multiscale contextual information better and enhance
boundary delineation. In remote sensing applications, U-
Net++ is particularly effective for segmenting buildings
with complex shapes and varying scales, offering improved
performance over traditional encoder-decoder frameworks in
challenging urban environments.
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c) PSPNet: Pyramid Scene Parsing Network (PSPNet)
enhances semantic segmentation by capturing global con-
textual information through its pyramid pooling module.
This module aggregates features at multiple spatial scales,
allowing the network to understand both coarse and fine
spatial patterns. PSPNet is particularly effective in remote
sensing scenarios, where buildings and landscapes exhibit
diverse sizes and spatial distributions. Its ability to inte-
grate multi-scale context significantly improves segmentation
performance in complex urban environments, especially in
scenes with occlusions, shadows, and cluttered structures.

d) DenseUNet: DenseUNet incorporates dense connec-
tivity into the U-Net structure, where each layer receives
input from all preceding layers within the block. This design
promotes feature reuse and strengthens gradient flow, im-
proving the segmentation of small objects and fine-building
structures. Its enhanced representation capability makes it
suitable for remote sensing imagery with dense and diverse
building distributions.

e) ResUNet: ResUNet integrates residual blocks into
the U-Net architecture, enabling deeper network structures
without degradation. The residual connections help preserve
spatial information during encoding and facilitate better
gradient propagation during training. ResUNet has been
proven effective in segmenting buildings in high-resolution
aerial and satellite imagery, especially in scenarios involving
shadow occlusion and varying architectural forms.

f) DeepLabV3+: DeepLabV3+ extends the DeepLab
family by combining atrous spatial pyramid pooling (ASPP)
with an encoder-decoder structure. It efficiently captures
multi-scale contextual information and refines object bound-
aries, which is critical for segmenting buildings at varying
scales. The use of dilated convolutions enhances the receptive
field without loss of resolution, making it robust in complex
urban landscapes.

g) SegFormer: SegFormer is a Transformer-based se-
mantic segmentation model that combines lightweight hi-
erarchical encoding with a simple MLP-based decoder. It
leverages self-attention to model global dependencies, mak-
ing it particularly effective in capturing large-scale spatial
relationships and accurately segmenting buildings even under
heavy occlusion or low-contrast conditions.

Each of these models presents unique strengths suited
to specific challenges in remote sensing image segmenta-
tion. U-Net and its variants (DenseUNet, ResUNet) excel
in preserving spatial detail and adapting to diverse urban
structures. DeepLabV3+ strikes a balance between efficiency
and accuracy through multi-scale context aggregation, while
SegFormer offers superior performance in capturing global
patterns. Together, these baselines provide a comprehensive
foundation for evaluating the proposed FGAMViT architec-
ture.

V. EXPERIMENTAL AND ANALYSIS
A. Visualized Results

Figure [2] presents the qualitative segmentation results of
FGAMVIT across four benchmark remote sensing datasets.
Specifically, Figure 2JA illustrates the results on the TAIL
dataset, Figure [2]B on the SpaceNet dataset, Figure 2]C on
the DeepGlobe Building Extraction dataset, and Figure 2JD
on the WHU Building dataset.

For each dataset, the subfigures from left to right show
the input remote sensing image, the predicted segmentation
map generated by FGAMViIT, and the corresponding ground
truth annotation. The visual comparisons demonstrate that
FGAMVIT effectively captures fine-grained details and com-
plex structures, achieving high correspondence with the an-
notated ground truths across diverse urban and rural scenes.

To highlight the performance advantages of the FGAMViT
model, Figure [3] presents a normalized comparative visu-
alization of evaluation metrics (excluding FLOPs) between
various baseline models and FGAMVIT across different
datasets, with FGAMViT’s performance standardized to 100
as the benchmark. This intuitive comparison approach clearly
demonstrates the relative performance differences among
models across multiple dimensions. Such analytical method-
ology not only facilitates a deeper understanding of model
characteristics, but also provides essential guidance for sub-
sequent model optimization and selection.

B. Model Comparison

Experiment 1 evaluates the proposed FGAMViIiT model
against a set of representative baseline segmentation models,
including U-Net, U-Net++, PSPNet, DenseUNet, ResUNet,
DeepLabV3+, and SegFormer, across four benchmark remote
sensing datasets. Table [] presents the comparative results,
with the best and second-best scores highlighted in bold and
underlined, respectively. FGAMViT consistently ranks first
or second across all key performance metrics, confirming its
robustness and effectiveness in building segmentation.

a) IAIL Dataset: FGAMVIT achieves the highest mloU
(41.47%), F1 Score (86.72%), and Pixel Accuracy (84.43%),
outperforming the second-best model by margins of 2.71%,
8.74%, and 7.76%, respectively. It ranks second in Dice
Coefficient (77.00%) and FLOPs, trailing the top model
by 2.12% and 2.49%. FPS reaches 15.9, slightly below
the highest rate of 17.5, reflecting a trade-off for enhanced
segmentation accuracy.

b) SpaceNet Dataset: FGAMVIT leads in mloU
(37.02%), F1 Score (76.51%), and Pixel Accuracy (74.83%),
surpassing the runner-up by 0.73%, 9.57%, and 6.59%, re-
spectively. It ranks second in Dice Coefficient (68.37%) and
FLOPs, with minimal differences of 2.24% and 2.91%. Its
FPS (14.0) is competitive, with only a 10.3% gap compared
to the fastest model.

¢) DeepGlobe Building Extraction Dataset: On this
dataset, FGAMVIT again secures the highest mloU
(40.18%), F1 Score (82.01%), and Pixel Accuracy (80.13%),
exceeding the second-best by 1.04%, 10.27%, and 7.12%,
respectively. It ranks second in Dice Coefficient (72.28%)
and FLOPs, with small gaps of 2.80% and 2.53%. FPS
(14.9) remains within an acceptable range for high-accuracy
applications.

d) WHU Building Dataset: FGAMViT demonstrates
the highest F1 Score (80.67%), Dice Coefficient (74.64%),
and Pixel Accuracy (80.18%), outperforming the second-best
model by 6.81%, 2.49%, and 6.73%, respectively. It ranks
second in mloU (38.78%) and FLOPs, with differences of
1.42% and 2.54%. The FPS (16.4) trails the fastest baseline
(18.2) by 9.9%.
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Fig. 2. Segmentation results of FGAMViT.

e) Metric Analysis: We adopt five core metrics to assess
model performance:

Mean Intersection over Union (mIoU): mloU measures
the average overlap between the predicted and ground-
truth regions. FGAMVIT consistently achieves the highest
or second-highest mloU, reflecting its ability to maintain
structural consistency across diverse urban layouts.

F1 Score: As the harmonic mean of precision and recall,
the F1 Score is crucial for evaluating class-imbalanced
datasets. FGAMViT’s high F1 scores across all datasets
highlight its reliability in detecting buildings with minimal
false positives and negatives.

Pixel Accuracy: While this metric can favour dominant
background classes, FGAMViT’s consistently high pixel
accuracy confirms its overall prediction quality. When com-
bined with mloU and F1 Score, it offers a comprehensive
view of performance.

Dice Coefficient: Although FGAMVIT slightly trails Seg-
Former in Dice Coefficient on some datasets, it remains
competitive. The marginal differences are mainly due to
SegFormer’s simplified decoder, which favours sharp bound-
ary delineation. FGAMVIiT compensates with more context-
aware, globally consistent predictions.

FLOPs and FPS: FGAMVIiT exhibits moderate computa-

tional complexity. While its FPS (ranging from 14.0 to 16.4)
is marginally lower than the most lightweight models, its
FLOPs remain within an efficient range. The model priori-
tizes segmentation quality, making the trade-off appropriate
for scenarios where accuracy is paramount.

Although FGAMVIT does not achieve the highest frame
rate, it consistently delivers superior or near-optimal per-
formance across all critical segmentation metrics. Its strong
results in mloU, F1 Score, and Pixel Accuracy make it well-
suited for high-resolution remote sensing applications re-
quiring detailed and reliable building extraction. FGAMViT
offers a balanced solution that effectively combines segmen-
tation fidelity with computational efficiency.

C. Impact of Discriminator

Experiment 2: Evaluating the Contribution of the
Discriminator Network to FGAMVIT Performance

Building upon the high segmentation accuracy demon-
strated by FGAMVIT in Experiment 1, Experiment 3 ex-
plores the role of the discriminator component in enhancing
the model’s predictive quality. Specifically, this experiment
investigates how the integration of a WGAN-GP-based dis-
criminator affects the model’s ability to refine segmentation
boundaries and recover small-scale structures. The WHUB
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Fig. 3. Proportional Performance Comparison of Baseline Models

dataset is selected as the evaluation benchmark, and com-
parative results between the complete FGAMVIT architecture
and an ablated version (without discriminator guidance) are
presented in Table [l The analysis focuses on three core
metrics: mloU, F1 Score, and Dice Coefficient.

The results reveal that the inclusion of the discriminator
network significantly improves segmentation accuracy across
all evaluated metrics. FGAMVIT with the WGAN-GP dis-
criminator achieves a mloU of 38.78%, compared to 35.63%
without it—an improvement of over 3 percentage points. The
F1 Score and Dice Coefficient also show substantial gains,
affirming the value of adversarial supervision. Several key
factors contribute to these improvements:

a) Structural Refinement Through Adversarial Feed-
back: The discriminator network introduces an adversarial
loss that evaluates the realism of the generated segmentation
maps at a local patch level. This feedback forces the gener-
ator to produce spatially coherent and structurally plausible
segmentation masks, effectively refining building contours
and eliminating spurious noise. As a result, the model is
better able to delineate boundaries in densely packed or
occluded urban regions.

b) Enhanced Discrimination of Small-Scale Targets:
Standard pixel-wise losses (e.g., MSE or BCE) tend to pri-

oritise dominant regions, leading to the underrepresentation
of sparse or small structures. The WGAN-GP discriminator
addresses this by learning high-order spatial distributions
and penalizing unrealistic segmentations of minor features.
Consequently, the generator is encouraged to preserve small
objects, improving the detection of isolated buildings and
narrow architectural elements.

c) Improved Feature Consistency Between Prediction
and Ground Truth: The discriminator evaluates both real and
generated segmentation maps in conjunction with the original
input image. This conditional formulation ensures that the
predicted output remains contextually aligned with the input,
strengthening the consistency between visual content and
structural interpretation. This context-aware guidance enables
the model to make more informed predictions in complex
environments with mixed land uses.

d) Gradient Stability and Optimization Benefits from
WGAN-GP: Unlike traditional GANs, which are prone to
unstable training and mode collapse, the use of Wasserstein
GAN with gradient penalty (WGAN-GP) provides smooth
and stable gradients throughout the training process. This sta-
bility is crucial in semantic segmentation, where pixel-wise
accuracy depends on precise, continuous feature alignment.
The WGAN-GP framework enhances the training dynamics,
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TABLE 1
QUANTITATIVE COMPARISON OF SEGMENTATION PERFORMANCE ACROSS FOUR DATASETS. BEST RESULTS ARE IN
BOLD; SECOND-BEST ARE UNDERLINED.

Dataset Metric U-Net U-Net++ PSPNet DenseUNet ResUNet DeepLabV3+ SegFormer FGAMYViIT
mloU 34.82 35.79 35.12 36.51 37.14 36.91 38.76 41.47
F1 Score 55.96 61.42 60.37 63.90 67.88 72.82 77.98 86.72
TAILL D_ice Coefficient ~ 58.83 56.15 55.73 56.91 60.67 73.05 79.12 77.00
Pixel Accuracy 47.83 56.72 55.98 59.24 63.75 68.88 76.48 84.43
FLOPs (G) 280.2 271.0 2453 263.4 225.3 201.6 96.40 98.89
FPS 14.8 15.1 15.3 15.5 16.2 17.5 16.0 15.9
mloU 31.12 32.20 31.75 32.75 33.41 32.96 36.29 37.02
F1 Score 49.85 54.23 53.72 56.88 60.71 64.74 66.94 76.51
SpaceNet D_ice Coefficient ~ 51.94 50.73 50.38 50.44 53.90 65.02 70.21 68.37
Pixel Accuracy 42.75 50.23 49.17 52.16 56.31 60.62 68.13 74.83
FLOPs (G) 2375 229.4 208.9 234.2 198.7 179.4 85.80 88.31
FPS 13.1 13.6 13.7 13.8 14.6 15.6 14.4 14.0
mloU 33.24 34.36 33.88 34.88 35.31 34.20 39.06 40.18
F1 Score 53.47 59.67 58.84 61.32 65.12 69.43 71.74 82.01
DBE Dice Coefficient ~ 56.90 53.66 53.14 54.28 57.91 69.52 74.92 72.28
Pixel Accuracy 45.61 54.98 53.67 56.33 60.82 65.51 72.81 80.13
FLOPs (G) 266.8 257.5 231.8 250.7 212.4 191.9 91.80 94.12
FPS 14.0 14.6 144 14.8 15.5 153 154 14.9
mloU 30.05 31.17 30.63 31.70 33.02 33.74 40.12 38.78
F1 Score 51.92 58.44 57.30 60.86 64.72 69.47 73.86 80.67
WHUB Dice Coefficient — 54.02 52.12 51.74 52.78 57.42 69.12 72.03 74.64
Pixel Accuracy 42.15 50.13 49.02 52.54 59.72 65.57 73.33 80.18
FLOPs (G) 261.9 253.1 228.7 248.2 210.8 190.5 91.10 93.42
FPS 15.0 15.5 15.2 15.6 16.5 18.2 16.0 16.4

leading to more robust and reliable convergence.

The inclusion of a WGAN-GP-based discriminator sig-
nificantly enhances the segmentation quality of FGAMViT.
Through adversarial supervision, the model benefits from
improved structure preservation, finer detail recovery, and en-
hanced boundary sharpness. These improvements are particu-
larly valuable in high-resolution remote sensing applications,
where accurate building extraction requires the integration
of both local detail and global coherence. The results of
this experiment demonstrate the discriminator’s essential role
in elevating FGAMViT’s performance, making it a critical
component for high-precision segmentation in complex urban
environments.

TABLE 1I
IMPACT OF THE DISCRIMINATOR ON FGAMVIT
PERFORMANCE (WHUB DATASET). THE BEST RESULTS
ARE IN BOLD.

Configuration mloU (%) F1 Score (%) Dice(%)
w/o Discriminator 35.63 73.92 71.14
w/ Discriminator 38.78 80.67 74.64

D. Impact of Frequency-Domain Loss Function

Experiment 3: Evaluating the Effect of Frequency-
Domain Loss on Segmentation Performance

To further investigate the contribution of individual com-
ponents within FGAMViT, Experiment 3 examines the im-
pact of incorporating a frequency-domain loss function into
the generator’s training objective. This experiment is con-
ducted on the WHUB dataset, comparing two configurations:
FGAMVIT with and without the frequency-domain loss
term Lp. The evaluation focuses on three key segmentation

metrics: mloU, F1 Score, and Dice Coefficient. Results are
summarized in Table [[IIl

The inclusion of Lp, designed to emphasise high-
frequency details through 2D Fourier transform-based op-
timisation, leads to consistent performance improvements.
FGAMVIT with the frequency-domain loss achieves a mloU
of 38.78%, F1 Score of 80.67%, and Dice Coefficient of
74.64%, outperforming the model variant without Ly by
2.21%, 5.31%, and 2.79%, respectively.

Several key advantages contribute to this improvement:

a) Enhanced High-Frequency Feature Preservation:
Standard spatial-domain loss functions often underweight
fine-grained textures, edges, and small structures. The
frequency-domain loss explicitly penalises discrepancies in
high-frequency components, encouraging the network to
retain sharp object boundaries and preserve fine structural
cues—critical for building accurate segmentations in dense
urban environments.

b) Complementarity with Adversarial and Spatial Su-
pervision: The frequency-domain loss complements both
the adversarial loss from the discriminator and the spatial
MSE loss by adding a spectral-level constraint. While the
adversarial loss enforces realism and the MSE maintains
pixel-level accuracy, Ly bridges the gap between these two
objectives by directly targeting consistency in frequency
distribution. This multi-perspective supervision leads to more
coherent and artifact-free predictions.

¢) Better Boundary Localization and Texture Recon-
struction: In urban remote sensing imagery, buildings fre-
quently contain repetitive textures and sharp contours. The
spectral sensitivity introduced by Lp allows the model to
detect and reconstruct these patterns more precisely, thereby
reducing over-smoothing and improving segmentation per-
formance near complex object edges.
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d) Improved Learning Stability and Convergence
Speed: By providing an additional learning signal in the
spectral domain, Ly helps stabilize training dynamics. The
combined optimization across both spatial and frequency
domains guides the network to converge toward more mean-
ingful minima, reducing the risk of local optima associated
with visually plausible but structurally inaccurate outputs.

The integration of the frequency-domain loss function
into FGAMVIT significantly enhances its segmentation per-
formance, particularly in preserving detail-rich regions and
maintaining boundary integrity. This enhancement is partic-
ularly beneficial in high-resolution satellite imagery, where
the clarity of small objects and edges is crucial. The results
confirm that Ly plays a crucial role in enhancing model
precision and visual coherence, supporting its inclusion in
the overall training objective.

TABLE III
IMPACT OF THE FREQUENCY-DOMAIN LOSS FUNCTION ON
FGAMVIT PERFORMANCE (WHUB DATASET). THE BEST
RESULTS ARE IN BOLD.

Configuration mloU (%) F1 Score (%) Dice (%)
w/o Frequency Loss 36.57 75.36 71.85
w/ Frequency Loss 38.78 80.67 74.64

VI. CONCLUSION

This study presents FGAMVIT, an enhanced Transformer-
based architecture tailored for high-resolution remote sens-
ing image segmentation. Building upon the MViT frame-
work, the proposed model introduces three critical innova-
tions—residual pooling connections, adversarial supervision
via a WGAN-GP discriminator, and a frequency-domain loss
function—to overcome the limitations of conventional Trans-
former models in capturing fine-grained spatial details and
semantic consistency in complex remote sensing scenarios.

The integration of residual pooling connections into the
attention mechanism addresses the challenge of feature
degradation during downsampling by preserving critical spa-
tial information. This enhancement enables the model to
maintain detailed object boundaries while ensuring com-
putational tractability. Simultaneously, the inclusion of a
discriminator network based on the WGAN-GP framework
introduces adversarial feedback that significantly sharpens
segmentation outputs, particularly in structurally complex
or sparsely represented regions such as small buildings or
narrow architectural elements.

In parallel, the incorporation of a frequency-domain loss
function complements spatial supervision by guiding the
generator to preserve high-frequency content. This dual-
domain training strategy enhances texture reconstruction and
boundary fidelity, both of which are crucial for accurate
building extraction and urban feature delineation in remote
sensing imagery.

Extensive  experiments  conducted  across  four
benchmark datasets—IAIL, SpaceNet, DeepGlobe, and
WHUB—demonstrate that FGAMViT consistently achieves
superior or second-best performance across all core metrics,
including mloU, F1 Score, Dice Coefficient, and Pixel
Accuracy. Despite a modest trade-off in FPS due to

its enhanced feature processing, the model maintains a
favourable balance between segmentation accuracy and
computational efficiency.

The proposed contributions highlight the importance of
integrating multiscale spatial encoding, adversarial learning,
and frequency-aware optimization in designing robust seg-
mentation models. FGAMVIT establishes a new benchmark
for precision in high-resolution remote sensing image seg-
mentation, providing a flexible foundation for future work.
Moving forward, these insights can be applied to further
optimise Transformer-based models for real-time geospatial
analysis, multimodal remote sensing fusion, and large-scale
land cover mapping.
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