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Abstract—Cloud computing task scheduling optimization is
a key technology to improve resource utilization and reduce
operating costs. The traditional scheduling methods are
sometimes limited in the aspects of dynamic, extensibility and
multi-objective. To solve this problem, this paper proposes an
Osprey Optimization Algorithm based on bidirectional search
factor (I00A) to solve the cloud computing task scheduling
optimization problem. First, eight bidirectional search factors
are proposed. The bidirectional search factor strategy mainly
controls the bidirectional random search through different
types of trigonometric functions, which greatly increases the
possibility of the exploration phase and avoids the algorithm
falling into the local optimal solution. Then, CEC-2022 is used
to test the proposed strategy, and it is found that [OOA based
on asin trigonometric function bidirectional search factor has
the best effect. Compared with other SI algorithms, IOOA can
get lower fitness value, which proves the superiority of the
proposed method again. Finally, considering the total cost,
time cost, load cost and price cost, IOOA is used to optimize
the system task scheduling in small-scale and large-scale task
scenarios. The results show that the proposed method has the
best performance and has excellent performance in cloud
computing task scheduling.

Index Terms—cloud computing, task scheduling, osprey
optimization algorithm, bidirectional search factor

I. INTRODUCTION

ith progress of science and technology, the global
digitization has been unprecedentedly developed.
From the imtial infrastructure virtualization technology,
Cloud Computing has gradually developed into a powerful
core support for the modern digital economy. Cloud
Computing is a service model that provides on-demand
computing resources through the Internet [1]. This means
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that users do not have to directly manage the underlying
infrastructure, so they can flexibly access and use resources,
and pay for what they actually use. The service system of
cloud computing is extremely rich, and common service
models are divided into various types, such as infrastructure
as a service (laaS), platform as a service (PaaS) and
software as a service (SaaS) [2]. [aaS provides virtualized
hardware resources (virtual machines, networks, storage,
etc.). PaaS provides a development environment. SaaS
provides ready-to-use software directly, accessed via a
browser. From the perspective of deployment mode, cloud
computing can be subdivided into public cloud, private
cloud [3], hybrid cloud, edge computing [4] etc. Each
model has its own advantages. The public cloud is operated
by a third-party professional organization. With the help of
resource sharing, the cost of users is effectively reduced.
Private cloud is mainly bult by enterprises or entrusted to
professional nstitutions hosting, which gives enterprises
stronger data control, to ensure data security. A hybrid
cloud is a combination of the two, combining the flexibility
of a public cloud with the security of a private cloud. Edge
computing is the practice of moving calculations closer to
data sources (such as ToT devices), significantly reducing
data transmission latency and improving system
responsiveness.

With its powerful computing resources and flexible
service model, cloud computing has become an important
infrastructure supporting large-scale computing and data
processing [5]. In the cloud computing system, the
efficiency of task scheduling plays a decisive role in the
rational utilization of system resources, the steady
improvement of service quality and the effective control of
operating costs. Efficient task scheduling can greatly
shorten the waiting time of task execution, give full play to
the potential of cloud computing resources, and achieve
maximum benefits. For cloud computing technology, how
to efficiently schedule tasks and make them reasonably
allocated in the computing resource pool has become a key
challenge [6]. The cloud computing system 1s huge in scale
and complex in structure, and the traditional scheduling
algorithm gradually shows its limitations when dealing with
the complex and changeable tasks and resource
environment. For example, it is easy to fall into local
optimal solutions, high computational complexity and poor
adaptability, and it is difficult to meet the growing needs of
cloud computing systems. At the same time, because the
cloud computing environment has the characteristics of
dynamic, heterogeneous and resource competition, the task
scheduling problem presents a high degree of complexaty,
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which is a typical NP-hard problem, and brings severe
challenges to the research and practice in this field.

To solve the above problems, it 1s difficult for traditional
heuristic algorithms and mathematical optimization
methods to obtain the global optimal solution in large-scale
and dvnamic cloud computing environment, but swarm
intelligent optimization algorithm (SI) provides a new idea
and method for task scheduling optimization of cloud
computing system. SI simulates the intelligent behavior of
biological groups in nature, showing significant advantages
in dealing with complex optimization problems, and can
provide effective solutions for cloud computing task
scheduling. Introducing SI algorithm into cloud computing
task scheduling can effectively improve the scheduling
effect and improve the overall performance of the system.
At present, SI algorithm has been widely used in the
research of cloud computing task scheduling. For example,
Majumdar et al. proposed a new variant (LOLSSA) to solve
the task scheduling problem in the cloud computing model.
Lens opposition learning was used to improve the diversity
of the mitial population. It is found that the proposed
method can meet the QoS requirements of service providers
and users [ 7]. Using artificial fish swarm algorithm (AFSA),
Khan et al. proposed an integration method of self-
organizing neural network and AFSA to solve the problem
of energy-saving cloud resource management. Finally, it is
found that the proposed method can improve the quality of
service delivery [8]. To solve the unloading problem of
networked vehicle computing tasks, Zhang et al. adopted
simulated annealing algorithm to enhance the global search
capability of the algorithm, and proposed a new method
based on PSO strategy. It is found that the proposed method
has the lowest cost and significant advantages in terms of
cost [9]. Tabary et al. combined GA and PSO algorithms
with SMPIA for task scheduling and resource allocation
respectively. It is found that compared with other
algorithms, the GA method can improve the total execution
time and resource utilization [10]. Wang et al. considered
the complementarity between algorithms and adopted PSO
for iterative optimization and GA as an evolutionary
strategy to solve the task unloading problem in device-
edge-cloud collaborative computing system. It 1s found that
the proposed method has higher resource utilization and
better acceptance rate [11]. Xiao et al proposed a
multi-strategy improvement method (MITSO) based on
tuna population optimization algorithm. Chaotic sequence,
Lévy flight and oppositional learming strategies are used to
solve the limitations of the original algorithm. Compared
with other well-known algorithms, MITSO has better
performance [12]. Talha et al. propose a new hybrid
approach based on Remora Optimization Algorithm to
improve the overall performance of cloud computing
service quality. The simplex strategy and quasi-opposition
learning strategy are used respectively to improve and
enhance the ability of the algorithm. Tt 1s found that the
proposed method is superior in terms of diversity and
effectiveness of solutions [13].

Inspired by the behavior of osprey in nature, Dehghani et
al proposed the Osprey Optimization Algorithm (OOA) in
2023 [14]. Up to now, OOA has been applied in many
fields, and has achieved good results and advantages. For

optimal antenna selection, Mandipudi et al. designed a new
approach combining OOA and LOA (COLQO). In addition,
the feature dependence selection technique 1s also
introduced. Compared with traditional algorithms and
hybrid algorithms, COLO can obtain lower fitness values
and maximize SE [15] Ramshankar et al took the
advantages of STBO and OOA and designed a hybrid
method (HSTOOA) to optimize the parameters in ATN.
Using the proposed method for parameter optimization can
improve the performance of the customer review prediction
method [16]. For image security, Satre et al. considered and
designed logistic mapping with OOA to interfere with nput
images, providing a new model choice for quantum 1mage
cryptography [17]. For smart grid energy management,
Rudrapogu et al. adopted OOA for load balancing and
energy distribution. By comparing single-objective and
multi-objective methods, it is found that the proposed
method can improve the accuracy of energy demand
prediction [18]. Alotaibi et al proposed a new technology
for automated and efficient detection of different kinds of
crowd density (OOADL-CDDC). The selection of
hyperparameters by OOA finally proves that the accuracy
of the proposed method is higher than that of the existing
model [19]. Younesi et al. used OOA to design a novel task
scheduling and resource allocation method (MoTiCPS).
Finally, it is found that compared with other methods, the
proposed method optimizes the performance of fog nodes,
improves the task success rate, and reduces energy
consumption [20]. To solve the unloading problem of
mobile edge computing tasks, MidhulaSn et al. designed a
new hybrid method (HPFOO) based on the advantages of
PAO and OOA. Parameters are optimized by HPFOO in
order to reduce transmission and computation delay [21].

Although OOA has been applied in many fields, the
algorithm still has some problems such as slow
convergence speed and easy to fall into local optimal
Although a variety of algorithms have been used to solve
the problem of cloud computing task scheduling
optimization, there is no guarantee that all algorithms can
balance the load or optimize resource allocation at any
moment. Therefore, OOA needs to be improved and
enhanced to better solve the problem of cloud computing
task scheduling optimization. In summary, the key
contributions of this paper are as follows:

(1) Eight kinds of bidirectional search factors are
designed through different types of trigonometric functions,
and an Osprey optimization algorithm (IOOA) based on
bidirectional search factors is proposed. The bidirectional
search factor can control the bidirectional random search,
increase the diversity of search, accelerate the convergence
speed, and avoid the algorithm falling into the local optimal
solution.

(2) CEC-2022 was used to verify and test the proposed
strategy, and it was found that IOOA based on asin
trigonometric function bidirectional search factor had the
best effect and accelerated the convergence speed.
Compared with other swarm intelligent optimization
algorithms, IOOA can obtain lower fitness values.

(3) In small-scale and large-scale task scenarios, IOOA 1s
adopted to optimize cloud computing task scheduling. It 1s
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found that the proposed method has excellent performance
in cloud computing task scheduling.

The rest structure of this paper is as follows. Section II
introduces the cloud computing task scheduling
mathematical model and objective function. Section III
describes in detail the implementation of the Osprey
optimization algorithm based on bidirectional search factor.
Section 1V is the simulation experiment and result analysis
of CEC-2022. Section V applies IOOA to cloud computing
task scheduling optimization. In small-scale and large-scale
task scenarios, IOOA 1s used to optimize task scheduling.
Section VI summarizes the full text and discusses the future
work.

II. CLouD COMPUTING TASK SCHEDULING
MATHEMATICAL MODEL

This section introduces the mathematical model and
objective function of cloud computing task scheduling.

A. Svstem Architecture Model

Cloud computing system architecture, as the comerstone
of stable operation of cloud computing services, covers
multiple hierarchical structures. All lavers cooperate with
each other to provide users with convenient and efficient
services. Overall, the cloud computing system architecture
includes the user layer, the task row layer, the VM
management layer, the resource pool, the scheduling and
management layer, and the task execution layer. Each layer
not only has a unique functional positioning, but also
collaborates with each other to build an organmic whole. The
task scheduling process of cloud computing system realizes
the efficient task processing and the optimal utilization of
resources through the close cooperation of multiple
components.

{a) User Layer. The user laver, as the starting point of the
task scheduling process of the cloud computing system, is a
direct interface for users to interact with the system. Users
submit task requests to the cloud computing system through
various terminal devices (personal computers, mobile
devices, etc.).

(b) Task List Layer. Tasks submitted and verified by the
user layer are stored to the task column surface in an
orderly manner. This layer acts as a "transit station" for
tasks, queuing them up in the order in which they are
submitted and the priority set by the user. The scheduling
algorithm can reasonably arrange the execution sequence of
tasks according to the task list.

{c) VM Management Layer. The VM management layer
centrally manages VM resources in the cloud computing
system. After the scheduling and management laver
determine the node for executing the task, the VM
management layer allocates appropriate VMS from the
resource pool to the task based on the task requirements.

{d) Resource Pool. A resource pool 1s a collection of
various physical and virtual resources in a cloud computing
system, including servers, storage devices, and network
bandwidth. These resources are abstracted management and
can be flexibly deploved by the system. The scale and
performance of the resource pool directly affect the task
processing capability of the cloud computing system.

(e) Scheduling and Management Layer. The scheduling
and management layer is the core component of the cloud
computing system task scheduling process, which 1s
responsible for coordinating the work of each component.
The scheduling and management layer collects task
information at the top of the task column, resource pool
status, and running status of the VM management layer.
Then, based on these information, advanced scheduling
algorithm is used to select the optimal execution node and
resource allocation scheme for each task. The scheduling
and management layer also monitors the task execution
progress in real time and adjusts and optimizes the
scheduling scheme based on the real-ime status of the task
and the dynamic changes of resources.

(f) Task Execution Layer. The task execution layer is the
end point of the task scheduling process and is responsible
for the actual execution of the task. When a task is assigned
to a specific virtual machine, the task execution layer starts
the corresponding program to execute the task. In the
process of task execution, the task execution layer will
feedback the task execution status and resource usage to the
scheduling and management management in real time.
Once a task is completed, the task execution layer returns
the execution result to the user and notifies the scheduling
and management layer to release occupied resources to
provide services for subsequent tasks.

B. Computational Resource Model

Function

and  Objective

The optimization of cloud computing task scheduling is
classic and complex. The specific mathematical modeling
1s as follows. CN indicates a collection of compute nodes.
CN ={N Ny N3, Ngy,...,N,}, CT represents a collection
of computational tasks. €T ={T, T2, T3 Ta....T.} .
which satisfies CN < CT. The final scheduling result 1s as

follows:
;. v dim

a, vt g,

This article uses three metrics to measure the
performance of each resource node, including processing
power, load capacity, and resource bandwidth A
point-based system 1s a common approach when
quantifying CPU [22]. With this quantification method, the
complex performance characteristics of the CPU are
converted into a comparable numerical value for system
design, resource allocation, or performance evaluation.
When scheduling and management select the execution
node for the task, the point-based system quantified CPU
processing power can quickly select the virtual machines
that meet the task's computing requirements. If a task has
high computing performance requirements, the scheduling
algorithm preferentially assigns the task to a VM with a
high CPU point value based on the CPU point value,
ensuring efficient execution of the task. The underlying
computing system can be modeled as a processing capacity
vector, a resource bandwidth vector, and a load capacity
vector. They are marked with the three symbols E,, €,
and S, respectively. The corresponding calculation tasks
are represented by E,, €, and S,
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In the optimization of cloud computing task scheduling,
this paper considers three objective functions: time cost,
load cost and price cost, and F,, F, and F4 correspond

to Eq. (2)-(4).

Eyi
SO @

Sti
=3B 3)

_ N M Eri Cri
Fa=%1,%",ay Et xC:ijP (4)

where, P represents the price unit.

By looking at the above formula, the three goals Fy, Fq,
and F3 all pursue the required minimum value. The need
to consider multiple conflicting objectives in the
optimization process 1s itself a multi-objective optimization
problem. In this paper, we consider converting multi-
objective optimization into single objective optimization.
First of all, due to the different dimensions of the objective
function, it needs to be normalized first. The Min-Max
normalization method is used for normalization processing,
and the calculation formula after normalization 1s shown in
Eq. (5)-(7). Then, the three objective functions are
transformed into single objective problems by linear
weighting method, and the traditional single objective
optimization technique is used to solve them. In order to
ensure fairness, the same weight ratio (1/3) is set for the
experiment, as shown in Eq. (8).

_1 LT

fi= Z;— Z} 1% maxyi{Eei/En} ®
_1 _ Swilni

f Zl 12; 1 % maxvi{Sti/5n} (6)

_1 (PxEyixCei)/(EnjxCnj)
fs= Et 121 1% maxy; {(PRExC0)/ (EnjxCnj)) @)

frinat = min{(f1 + f2 + f3)/3} ®)

III. OSPREY OPTIMIZATION ALGORITHM BASED ON
BIDIRECTIONAL SEARCH FACTOR (IOOA)

This section introduces in detail the implementation of
Osprey Optimization Algorithm  (IOOA) based on
bidirectional search factor.

A. Basic Osprey Optimization Algorithm (O0A4)

Osprey Optimization Algorithm (OOA), proposed in
2023, is an algorithm inspired by the predatory behavior of
osprey in nature [14]. OOA simulates the unique hunting
strategy and group cooperative behavior of ospreys and can
be used as a new method to solve complex optimization
problems. The algorithm is divided into two stages, the first
stage is to locate and catch fish, and the second stage is to
bring the fish to a safe position These two phases
correspond to exploration and exploitation respectively.

{(a) Locating and fishing

As efficient hunters, ospreys use their excellent eyesight
to pinpoint underwater schools of fish. When they spot a
target, they quickly attack and finish the hunt. OOA mimics
this natural behavior. Through the establishment of the
osprey predation model, the position of the search agent
changes, thus enhancing the global exploration ability,

helping to find the optimal solution area and avoid falling
into the local optimal.

Set FP; is shown in Eq. (9), i represents the i-th osprey
and FP represents the fish set.

FPi={X|ke{l2. ... NJAF, <F}U{Xpeerd (9

The osprey randomly locates the fish and catches it. The
position update is shown in Eq. (10), XF! indicates the
new position of the osprey. If the new position is better
than the previous position, it is replaced with the new
position, otherwise, no change is made.

xf}l = xi,j +r- (SFU -1 xi,j) (10)
P <,
Xi= {Xi,etse =

where, r 1is a random number between [0,1], I's value
takes 1 or 2, FI! represents the fitness value of xf!, F;
represents the fitness value of the previous position, and
SF represents the fish determined by the osprey.

{b) Bring the fish to a safe position

Ospreys take their prey to a safe place to feed. The
position of the search agent was fine-tuned by modeling
how the osprey carried its prey to the right location. This
mechanism enhances the local exploitation ability of the
algorithm, and enables it to converge further around the
found high-quality solutions and obtain better results.

In the concrete implementation, OOA first randomly
generates a "suitable feeding location” for each individual,
as shown in Eq. (12). If the new position is better than the
previous position, it is replaced with the new position,
otherwise, no change is made. This mimics the behavior of
the osprey in choosing a safe place to eat.

x‘n2 ij (b +7-(uby — b))/t (12)
(XD if FP? < F,

X = {Xf,else (13)

where, F'? represents the fitness value of x[? 7,and F,

represents the fitness value of the previous position.

B. Bidirectional Search Factor Sirategy

With its powerful global search ability, SI algorithm has
shown important application value in many fields. In the
original OOA exploration phase, 1 1s equivalent to the core
parameter guiding individual search and step size, and its
design 1s directly related to the overall optimization
performance of the algorithm. However, the defects of the
original OOA, such as slow convergence speed and
insufficient local development ability, make it an important
breakthrough to explore a new and efficient search
mechanism to enhance OOA.

This paper innovatively proposes a bidirectional search
factor mechanism based on various trigonometric functions.
The core idea of this mechanism is that search factors are
generated by 8 different trigonometric functions, ncluding
sine function, cosine function, tangent function, secant
function, arc sine function, arc cosine function, arc tangent
function and arc cotangent function. The search factor
controlled by the above trigonometric function takes its
value in the interval [-1, 1], forming a bidirectional search
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factor and increasing the diversity of exploration.
Specifically, the bidirectional search mechanism enables
search individuals to explore in the search space
simultaneously along the positive and negative directions
through the cooperative work of positive and negative
search factors. On the one hand, the positive search factor
is used to guide the individual to explore the movement, on
the other hand, the negative search factor is used to realize
the reverse detection. It helps the algorithm to identify the
potential good solution region effectively. The bidirectional
search factor mechanism has the following advantages. (1)
It avoids the unionization of the search direction and avoids
falling into the local optimal. (2) The bidirectional search
mechanism significantly expands the search coverage and
enables the algorithm to explore the solution space more
comprehensively. (3) The algorithm can adjust the search
direction and amplitude adaptively to further improve the
performance of the algorithm.

The algorithm flow chart is shown in Fig. 1. Fig. 2 shows
the trend chart of various bidirectional search factors, and
Table I i1s the abbreviation symbol comparison table,
including the formulas and parameters of various
bidirectional search factors for easier observation and

reproduction. The exploration phase of Eq. (10) is modified.

After adding various bidirectional search factors, the
exploration phase of IOOA is shown in Eq. (14).

1_
xf- = xl"j + BSF . (SFL,] -1 xl"j) (14)
where, Bgp represents various bidirectional search factors.

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS
or CEC-2022

The CEC-2022 test function set is one of the commonly
used standard benchmarks for evaluating the performance
of optimization algorithms. The test suite contains 12
functions with different characteristics (F1-F12), covering
multiple types such as single-peak, multi-peak, hybrid and
composite, and can comprehensively test the performance
of the algorithm in terms of exploration and development
ability, local optimal avoidance, dimensional scaling, ete.
This section will introduce the experimental setup,
parameter configuration of each algorithm and result
analysis in detail.

In order to verify the performance of the proposed
strategy and improved algorithm, the experiments in this
section all use CEC-2022 test function set, and the basic
parameters are consistent on all test function sets. In the
experiment, the dimensions were set to 10, the population
size to 30, and the number of iterations to 500. The average
value of 30 independent experiments was taken to avoid the
chance and randomness of the experiment.

A. Choosing the Best Bidirectional Search Factor

Fig. 3 shows the convergence curve trend diagram of the
original OOA algorithm and the addition of 8 bidirectional
search factor strategies. Table II is a summary of the
experimental data results of various algorithms on the
CEC-2022 test function set. As can be seen from Fig. 3, in
all other test functions except F4, the bidirectional search
factor strategy greatly improves the effect of OOA, and is
far superior to the original OOA in terms of convergence

speed and fitness value, which fully proves the
effectiveness of the bidirectional search factor strategy. In
F4, the bidirectional search factor using sin, cos and sec
trigonometric functions performs worse than the original
OOA in terms of average fitness value. The optimal
average fitness value can be obtained from 9 test functions
including F1, F3, F4, F6, F7, F8, F9, F11 and F12, and the
minimum fitness value can be obtained from 6 test
functions including F1, F3, F4, F5, F6 and F8 by using asin
bidirectional search factor. The minimum mean is obtained
on F10 using sin bidirectional search factor. The optimum
fitness value is obtained on F9 by cos bidirectional search
factor. The tan bidirectional search factor is used to obtain
the minimum average value on F5 and the optimal value on
F10. The sec bidirectional search factor is used to obtain
the optimal value on F12. The minimum value is obtained
on F2 by using acos bidirectional search factor. atan
bidirectional search factor is used to obtain the minimum
mean value on F2, and the minimum fitness values on F7
and F11. The minimum value is obtained on F10 by using
acot bidirectional search factor. The optimal values in
Table II have been marked in bold. It can be found that
IOOA wusing asin bidirectional search factor obtains the
optimal average fitness value in 9 test functions and the
minimum fitness value in 6 test functions. Sorted by
Friedman, the first place result is highlighted. The strong
performance of asin bidirectional search factor is proved
again, which is much better than other bidirectional search
factors in terms of convergence speed and fitness value.

Start

( Initialization parameters and population information )

>
v
‘ Phase 1: Update /P using Eq.(9)

!

‘ Phase 1: Calculate new position of the IOOA using Eq.(14)

!

Phase 1: Update new position using Eq.(11)

!

Phase 2: Calculate new position of the OOA using Eq.(12)

!

Phase 2: Update new position using Eq.(13)

¥
i<N —i=i+l

No

Save the best solution found so far

i=1 Yes
t=it+1 0

No

End

Fig. 1 IOOA flow chart.
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Fig. 2 The changing trend of various bidirectional search factors.
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Fig. 3 Convergence curves of various bidirectional search factors on CEC-2022.
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TABLE I. DETAILED NAME AND PARAMETER INFORMATION FOR EACH BIDIRECTIONAL SEARCH FACTOR

Full title Abbreviation Parameters setting

Sine function bidirectional search factor sin Bgpy = sin(2 - pi - ¢),0~U(0,1)

Cosine function bidirectional search factor cos Bgpy = cos(2 - pi- ¢),0~U(0,1)
Tangent function bidirectional search factor tan Bgpz = 0.64 - tan(yp) - 0,9~U(0,1),0 = randi([0,1]) *2 —1

Secant function bidirectional search factor sec Bgpy = 0.5 sec(@) - 0,0~U(0,1),0 = randi([0,1]) *2 -1

Arc sine function bidirectional search factor asin Bsps = 0.63 - asin(¢) - 0,0~U(0,1),0 = randi([0,1]) *2—1
Arc cosine function bidirectional search factor acos Bgrg = 0.63 - acos(¢) - 0,9~U(0,1),0 = randi([0,1]) *2 -1
Arc tangent function bidirectional search factor atan Bgpy = 1.25 - atan(¢) - 0,0~U(0,1),0 = randi([0,1]) *2 -1
Arc cotangent function bidirectional search factor acot Bgrg = 0.63 - acot(p) - 0,9~U(0,1),0 = randi([0,1]) *2— 1

B. Comparison Between IOOA and Other Algorithms

For convenience, the algorithm that adopts the asin
bidirectional search factor strategy is named IOOA. This
section compares [OOA with other SI optimization
algorithms, including GCR A[23], FLO [24], AOA [25],
PDO [26] and RSA [27]. The detailed name and parameter
information for each algorithm is shown in Table III. Fig. 4
shows the convergence curve trend diagram of IOOA and
other 5 SI optimization algorithms. Table IV is a summary
of the experimental data results of various algorithms on
the CEC-2022 test function set. It can be seen from Fig. 4
that compared with other algorithms, except F10 and F12,
IOOA can converge to the optimal value and obtain the
minimum average fitness value. The minimum fitness

values can be obtained in 9 test functions: F1, F2, F3, F5,
F6, F7, F8, F10 and F12. In terms of variance, IOOA can
obtain the minimum standard deviation in the six test
functions of F2, F4, F6, F7, F8 and F9, indicating that it is
more stable. The above analysis fully proves the superiority
of IOOA in solving the CEC-2022 test function set.
Compared with other algorithms, GCRA obtained the
optimal average fitness values in F10 and F12. The
minimum fitness value of AOA is obtained on F9. PDO
obtains the optimum fitness value on F11. The optimal
values 1n Table IV have been marked in bold, and it can be
clearly seen that IOOA obtains the best average fitness
value in 10 test functions and the minimum fitness value in
9 test functions. In addition to this, IOOA 1is highlighted
with the first place result after Friedman's ranking.
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TABLE II. SUMMARY TABLE OF EXPERIMENTAL DATA RESULTS

F Q0A QOA-sin QO0A-cos OOA-tan OOA-sec QOA-asin OOA-acos OOA-atan OOA-acot

Ave 8.641E+03 7.188E+03 6.069E+03 5A412E+03 6.855E+03 4.493E+03 6.779E+03 6.026E+03 7.05TE+03
Fy Std 1.689E+03 1.718E+03 2.764E+03 2.091E+03 2.516E+03 1.835E+03 2.285E+03 2.052E+03 2.240E+03
Best 4 418E+03 3 608E+03 1.967E+03 2.109E+03 2 .006E+03 1.162E+03 2446E+03 2397E+03 3.143E+03
Ave 1.780E+03 9.883E+02 8.221E+02 7 A86E+02 8.299E+02 7.931E+02 8.103E+02 6.430E+02 6.797TE+02
F, Std 7 A20E+02 7.265E+02 2 977E+02 2 640E+02 3.157E+02 4 A04E+02 3.505E+02 1.581E+02 1.125E+02
Best 9 A80E+02 5.590E+02 5.095E+02 4 473E+02 5.055E+02 4 541E+02 4.275E+02 4.780E+02 5.035E+02
Ave 6.442E+02 6.387E+02 6.365E+02 6.343E+02 6.336E+02 6.301E+02 6.341E+02 6.347E+02 6.363E+02
F Std 8423E+00 1.168E+01 1.196E+01 1.091E+01 8.994E+00 9.903E+00 1.025E+01 7.541E+00 9.910E+00
Best 6.282E+02 6.159E+02 6.190E+02 6.112E+02 6.148E+02 6.111E+02 6.167E+02 6.231E+02 6.190E+02
Ave 8473E+02 8475E+02 8474E+02 8.369E+02 8481E+02 8.349E+02 8428E+02 8370E+02 8458E+02
F, Std 1.202E+01 8.238E+00 8.722E+00 6.925E+00 8.285E+00 8.561E+00 9.197E+00 7.780E+00 1.068E+01
Best 8.190E+02 8.311E+02 8.225E+02 8.237E+02 8.235E+02 8.120E+02 8.251E+02 8.238E+02 8.298E+02
Ave 1.424E+03 1.351E+03 1.293E+03 1.199E+03 1.308E+03 1.240E+03 1.297E+03 1.210E+03 1.363E+03
Fs Std 2.110E+02 1.914E+02 1.722E+02 1.325E+02 2.130E+02 1.807E+02 2381E+02 1.564E+02 1.678E+02
Best 1.101E+03 1.045E+03 9.773E+02 1.014E+03 9.722E+02 9.217E+02 9491E+02 9.584E+02 1.089E+03
Ave 5.921E+06 3.518E+06 3.228E+06 3.390E+04 2.005E+06 1.175E+04 2.803E+06 5.137E+05 1.096E+06
F, Std 1.304E+07 7.360E+06 1.223E+07 1.180E+05 5.849E+06 3.596E+04 1.023E+07 1.899E+06 3.040E+06
Best 2.510E+03 2.094E+03 1.896E+03 1.896E+03 1.879E+03 1.860E+03 1.890E+03 1.861E+03 1.965E+03
Ave 2.093E+03 2.070E+03 2.076E+03 2.067E+03 2.074E+03 2.064E+03 2.067E+03 2.068E+03 2.073E+03
F; Std 2 A432E+01 2.060E+01 2.156E+01 2.034E+01 2.158E+01 2.082E+01 2.019E+01 2.001E+01 2.219E+01
Best 2.050E+03 2.036E+03 2.032E+03 2.034E+03 2.037E+03 2.024E+03 2.034E+03 2.022E+03 2.040E+03
Ave 2.233E+03 2.231E+03 2.232E+03 2.227E+03 2.230E+03 2226E+03 2.230E+03 2.228E+03 2.230E+03
Fy Std 9 815E+00 7.977TE+00 7.608E+00 3 611E+00 3 971E+00 4.037E+00 3.968E+00 3.369E+00 3.543E+00
Best 2.223E+03 2.224E+03 2.223E+03 2.214E+03 2.221E+03 2211E+03 2.219E+03 2.220E+03 2.225E+03
Ave 2.750E+03 2.717E+03 2.710E+03 2.712E+03 2.727E+03 2.709E+03 2.717E+03 2.719E+03 2.732E+03
Fy Std 4 543E+01 3 351E+01 3.792E+01 2.692E+01 3.133E+01 2.411E+01 4.306E+01 2.994E+01 3.132E+01
Best 2.634E+03 2 644E+03 2.619E+03 2.663E+03 2. 679E+03 2 659E+03 2.631E+03 2.642E+03 2.669E+03
Ave 2.706E+03 2.585E+03 2.623E+03 2.601E+03 2.615E+03 2 .600E+03 2.670E+03 2.618E+03 2.618E+03
F, Std 1.572E+02 8.903E+01 9.396E+01 8.070E+01 1.005E+02 7.991E+01 1.398E+02 1.113E+02 9.357E+01
Best 2.516E+03 2.505E+03 2.505E+03 2.501E+03 2.501E+03 2.504E+03 2.505E+03 2.508E+03 2.501E+03
Ave 3 651E+03 3 244E+03 3.224E+03 3.102E+03 3.105E+03 3.054E+03 3.174E+03 3214E+03 3339E+03
F,, Std 5.041E+02 3.536E+02 4.035E+02 2.584E+02 2.707E+02 2218E+02 3.645E+02 4.380E+02 3.287E+02
Best 2 937E+03 2 846E+03 2.779E+03 2 813E+03 2.800E+03 2.775E+03 2.804E+03 2.770E+03 2.815E+03
Ave 3.073E+03 2 915E+03 2.907E+03 2.904E+03 2.902E+03 2.895E+03 2911E+03 2.907E+03 2913E+03
Fy;  Std 1.018E+02 3.193E+01 3 989E+01 2.990E+01 2.979E+01 2.378E+01 4.020E+01 2.965E+01 4.186E+01
Best 2 949E+03 2 .871E+03 2 .870E+03 2.871E+03 2.865E+03 2 .867E+03 2.869E+03 2.866E+03 2.872E+03

Friedman 8.75 6.67 5.92 2.50 5.25 1.50 4.67 367 6.08

Rank 9 8 6 2 5 1 4 3 7

TABLE III. DETATLED NAME AND PARAMETER INFORMATION FOR EACH ALGORITHM

Full title Abbreviation Parameters setting
Improved Osprey Optimization Algorithm I00A I =1lor2,cf =0.63F = randi([0,1]) *2 — 1
Greater Cane Rat Algorithm GCRA C is a random number,y = rand[1,4]
Frilled Lizard Optimization TFLO r is a normally distributed random number in the interval [0,1], [ = 1or2
Arithmetic Optimization Algorithm AOA ¢, =2,6,=6,c3=1¢c,=2u=09I=01
Prairie Dog Optimization Algorithm PDO p=01e=0005
Reptile Search Algorithm RSA a=015=0005
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Fig. 4 Convergence curves of various algorithms on CEC-2022.
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Fig. 5 Ranking radar chart of each algorithm on CEC-2022.

Fig. 5(a) is a radar chart ranking the average fitness
values of each variant. It can be found from Fig. 5(a) that
the asin has the smallest area, which means that the higher
the ranking, the better the performance. The validity of the
bidirectional search factor of asin trigonometric functions
has been proved again. Fig. 5(b) is the average fitness value
ranking radar chart of IOOA and other algorithms. It can be
found that IOOA occupies the smallest area and has better
performance compared with other algorithms. The validity
of TOOA based on the bidirectional search factor of asin
trigonometric functions has been proved.
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V. TOOA SCHEDULING OPTIMIZATION IN SMALL-SCALE
AND LLARGE-SCALE TASK SCENARIOS

This section uses IOOA to solve cloud computing task
scheduling optimization problems in small-scale and
large-scale. In the simulation experiment process of task
scheduling optimization, the maximum number of iterations
T =500, the population of each algorithm P =50, the
number of virtual machines VMS = 40 . The following
table IV describes the VM and task configuration
parameters.
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TABLE IV. SUMMARY TABLE OF EXPERIMENTAL DATA RESULTS

F 100A GCRA FLO AOA FDO RSA
Ave 4.391E+03 1.025E+04 8.919E+03 1.201E+04 1.487E+04 9.396E+03
F, Std 1.869E+03 2.347E+03 1.440E+03 4.283E+03 7 464E+03 2.294E+03
Best 1.905E+03 6.064E+03 5.199E+03 4.016E+03 5.869E+03 6.368E+03
Ave §.159E+02 1.240E+03 1.730E+03 1.679E+03 1.061E+03 1.124E+03
F, Std 3.595E+02 6.063E+02 8.059E+02 6.854E+02 3.758E+02 7.037E+02
Best 4.970E+02 6.376E+02 5.641E+02 6.862E+02 5.623E+02 5.629E+02
Ave 6.348E+02 6.570E+02 6.526E+02 6.371E+02 6.492E+02 6.505E+02
F; Std 1.182E+01 6.714E+00 1.157E+01 7.214E+00 1.153E+01 9.451E+00
Best 6.116E+02 6.442E+02 6.326E+02 6.228E+02 6.263E+02 6.307E+02
Ave §.359E+02 8.612E+02 8.562E+02 8.372E+02 8.525E+02 8.511E+02
F, Std 7.923E+00 8.748E+00 9.098E+00 9.033E+00 1.157E+01 8.491E+00
Best 8.218E+02 8.388E+02 8.379E+02 8.209E+02 8.322E+02 8.378E+02
Ave 1.207E+03 1.901E+03 1 476E+03 1.383E+03 1.480E+03 1.547E+03
F Std 1.726E+02 2.293E+02 1.941E+02 1.518E+02 2.321E+02 1.801E+02
Best 9.208E+02 1.419E+03 1.117E+03 1.117E+03 1.185E+03 1.176E+03
Ave 5.512E+03 9.197E+08 5.506E+07 1.341E+08 2.587E+08 1.061E+08
F, Std 1.136E+04 5.810E+08 7.031E+07 4.075E+08 2.712E+08 1.194E+08
Best 1.906E+03 1.108E+07 3 .830E+05 2.052E+03 3.163E+06 1.909E+07
Ave 2.062E+03 2.135E+03 2.115E+03 2.102E+03 2.116E+03 2.143E+03
F; Std 1.664E+01 3.552E+01 2.830E+01 2.738E+01 2.669E+01 2.664E+01
Best 2.031E+03 2.083E+03 2.044E+03 2.047E+03 2.071E+03 2.096E+03
Ave 2.227E+03 2.272E+03 2.277E+03 2.294E+03 2.262E+03 2.269E+03
F Std 4.019E+00 1.971E+01 6.922E+01 7.857E+01 2.804E+01 4.141E+01
Best 2215E+03 2.241E+03 2.227E+03 2.227E+03 2.228E+03 2.243E+03
Ave 2.706E+03 2.731E+03 2.784E+03 2. 746E+03 2.795E+03 2. 748E+03
F, Std 2.639E+01 5.578E+01 4 934E+01 6.608E+01 7.603E+01 5.157E+01
Best 2.655E+03 2.635E+03 2.702E+03 2.601E+03 2.615E+03 2.676E+03
Ave 2.605E+03 2.602E+03 2. 841E+03 2.680E+03 2.665E+03 2.712E+03
Fig Std 7.374E+01 6.029E+01 2.537E+02 1.736E+02 1.463E+02 1.633E+02
Best 2.501E+03 2.548E+03 2.553E+03 2.523E+03 2.510E+03 2.514E+03
Ave 3.229E+03 3.538E+03 3.698E+03 3.528E+03 3.270E+03 3.331E+03
Fi Std 4.208E+02 1.550E+02 4 569E+02 4.281E+02 4.027E+02 3.993E+02
Best 2.811E+03 3.097E+03 2.952E+03 2.859E+03 2.792E+03 2.880E+03
Ave 2.910E+03 2.874E+03 3121E+03 3.033E+03 2.891E+03 2.942E+03
Fi, Std 3.062E+01 2.812E+00 1.183E+02 5.826E+01 1.242E+01 6.411E+01
Best 2.868E+03 2.870E+03 2.904E+03 2.935E+03 2.875E+03 2.873E+03
Friedman 1.25 4.17 4.50 367 3.58 383
Rank 1 5 6 3 2 4
TABLE V. PARAMETER SETUP OF VMS AND TASKS
Parameter Range of VM values Range of Task values
CPU(E) [200,500] [10,50]
Memory (S) [100,500] [50,100]
Resource (C) [100,250] [20,50]
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TABLE VI. SUMMARY OF THE DIFFERENT COSTS OF EACH ALGORITHM

100 tasks
Cost I00A WOA RSO AOA SOA ACO
Total 0.2188 0.2609 0.2967 0.2620 0.2452 03012
Price 0.1330 0.1531 0.1726 0.1525 0.1454 0.1948
Time 0.3486 0.3400 03614 03319 0.3198 0.3833
Load 0.1749 0.2897 0.3310 0.3016 0.2704 0.3255
500 tasks
Cost I00A WOA RSO AOA SOA ACO
Total 0.2224 0.2886 0.3023 0.2848 0.2720 0.2986
Price 0.1356 0.1786 0.1851 0.1764 0.1593 0.1860
Time 0.3656 03697 0.3802 0.3694 0.3509 0.3735
Load 0.1658 03177 0.3300 0.3086 0.3058 0.3364
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Fig. 6 The change trend of each algorithm when the number of tasks is 100.

A. Small-scale Task Scenario

The following are the experimental data and results in a
small-scale task scenario. To ensure the fairness of the
experiment, in a small-scale task scenario, the performance
of various algorithms in terms of total cost, price cost, time
cost and load cost is considered when the number of tasks
1s 100 and 500 respectively. Fig. 6 shows the change trends
of different algorithms in total cost, price cost, time cost

Number of Iterations

(d) Load Cost

and load cost respectively when the number of tasks is 100.
Fig. 7 shows the variation trend of each cost of different

algorithms when the number of tasks is 500. Table VI is a

summary of the different costs of IOOA and other SI

algorithms when the number of tasks is 100 and 500. For

ease of viewing, the optimal values of the data are

highlighted in bold.
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Fig. 7 The change trend of each algorithm when the number of tasks is 500.

As can be seen from Fig. 6(a), IOOA has the smallest
total cost and can quickly reach the minimum total cost.
Compared with other algorithms, IOOA has the best
performance and the difference is obvious. In Fig. 6(b),
compared with other algorithms, IOOA is still at the bottom
of the convergence curve, and the price cost is much lower
than other algorithms. As you can see from Fig. 6(c), late in
the iteration, SOA suddenly drops off and gains an
advantage in terms of time cost. Then, in that order, AOA,
WOA, and IOOA. TOOA came in fourth. In Fig. 6(d), the
convergence curve of IOOA is much lower than that of
other algorithms. This means that [OOA spends the least on
load costs. As can be seen from Fig. 7(a), IOOA has far
opened up the gap between other algorithms. This
illustrates the significant advantages of IOOA in terms of
total cost, rapid convergence and minimal total cost spent.
In Fig. 7(b), IOOA has the lowest price and cost, and
compared with other algorithms, IOOA has the best
performance with obvious differences. As you can see in
Fig. 7(c), a similar situation occurs as in Fig. 6(c), where
SOA suddenly drops off late in the iteration and gains an
advantage in terms of time cost. But the difference is that at
500 tasks, IOOA comes in second in terms of cost of time
spent. As the number of tasks increases, IOOA's time cost
decreases. In Fig. 7(d), the convergence curve of IOOA is
still much lower than other algorithms, which once again
proves the strength of IOOA in load cost. As can be seen
from Table VI, compared with other algorithms, IOOA
always spends the least on total cost, price cost and load
cost when the number of tasks 1s 100 or 500. At 100 tasks,
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IOOA loses 0.0288 more in time cost than SOA. At 500
tasks, IOOA loses 0.0147 more in time cost than SOA.
Overall, although the IOOA time cost does not reach the
minimum value, the difference is not large. At the same
time, considering the performance of IOOA on the other
three costs, TOOA 1is still an effective method for
scheduling optimization in small-scale task scenarios.

B. Large-scale Task Scenario

In a large-scale task scenario, the performance of various
algorithms in terms of total cost, price cost, time cost and
load cost is considered when the number of tasks is 1000
and 5000 respectively. Fig. 8 shows the change trends of
different algorithms in total cost, price cost, time cost and
load cost respectively when the number of tasks is 1000.
Fig. 9 shows the variation trend of each cost of different
algorithms when the number of tasks is 5000. Table VIl is a
summary of the different costs of each algorithm when the
number of tasks is 1000 and 5000, and the optimal value is
marked in bold. As can be seen from Fig. 8(a), the
convergence speed of IOOA is much faster than other
algorithms, and the total cost is the least. SOA comes in
second, but the difference is huge. In Fig. 8(b), IOOA leads
by a wide margin and is far lower than other algorithms in
terms of price cost. As can be seen from Fig. 8(c), IOOA
quickly reaches the minimum time cost value in the early
iteration phase. But at the end of the iteration, the SOA
suddenly dips down and is close to the IOOA value. Behind
the two is WOA. In Fig. 8(d), [OOA reaches the minimum
load cost with very clear speed and trend, and other
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algorithms differ greatly from [OOA. It can be seen from
Fig. 9(a) that IOOA has a fast convergence speed and its
convergence curve is much better than other comparison
algorithms. Once again, [OOA performs well in terms of
total cost. In Fig. 9(b), IOOA is significantly different from
other comparison algorithms and costs the least. As you can
see from Fig. 9(c), [OOA spends the least in terms of time
cost at 5000 tasks. This 1s different from 100, 500 and 1000
tasks, as the number of tasks increases, you can see that
IOOA shows more and more performance, and less and less
loss in time cost. In Fig. 9(d), IOOA is far apart from other
comparison algorithms, which fully demonstrates the
advantages of IOOA in terms of load cost. Fig. 10 is a bar
chart showing the total, price, time and load cost of each SI

algorithm under different number of tasks. Through the bar

chart, the performance of each algorithm can be viewed and
compared more intuitively. As can be seen in Fig. 10,
IOOA has outstanding performance in terms of total, price
and load cost.

As can be seen from Table VII, compared with other
algorithms, IOOA spends the least on total cost, price cost
and load cost when the number of tasks is 1000. In terms of
time cost, IOOA's time cost is only 0.0002 more than
SOA's, which is almost the same. At 5,000 tasks, IOOA 1s
optimal in terms of all costs. Overall, IOOA's performance
in total cost, price cost and load cost is very stable, and it is
an effective method. As the number of tasks increases, the
time cost of [OOA gradually increases. [OOA is a powerful
method for scheduling optimization in large-scale task
scenarios.

TaBLE VII. SUMMARY OF THE DIFFERENT COSTS OF EACH ALGORITHM

1000 tasks
Cost 100A WOA RSO AOA SOA ACO
Total 0.2213 0.2922 0.2976 0.2876 0.2848 0.2986
Price 0.1324 0.1760 0.1829 0.1779 0.1720 0.1806
Time 0.3640 03712 0.3776 0.4086 0.3638 0.3742
Load 0.1675 0.3294 0.3218 0.2764 03187 0.3411
5000 tasks
Cost 100A WOA RSO AOA SOA ACO
Total 0.2202 0.2972 0.3000 0.2870 0.2901 0.3002
Price 0.1296 0.1822 0.1810 0.1746 0.1748 0.1816
Time 0.3691 0.3794 0.3808 04116 0.3751 0.3806
Load 0.1619 0.3299 0.3343 0.2749 0.3203 0.3384
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Fig. 8 The change trend of each algorithm when the number of tasks is 1000.
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VI. CONCLUSION

Aiming at cloud computing task scheduling
optimization, an Osprey optimization algorithm based on
bidirectional search factor is proposed in this paper. The
original OOA algorithm has the problem that the
convergence speed is slow and the better value cannot be
found. Through different types of trigonometric functions, a
total of 8 bidirectional search factors are designed. The
original OOA algorithm only considers single-direction
search at the location update, but each search factor
proposed in this paper has its own unique bias and
advantages, considering both positive and negative
directions. The direction and amplitude of random search
are controlled according to the probability advantage of
corresponding trigonometric function, which increases the
diversity of search, speeds up the convergence speed and
avoids the algorithm falling into local optimal. The
proposed strategy 1is tested by CEC-2022, and it is found
that TOOA based on asin trigonometric function
bidirectional search factor has the best effect. Finally, the
proposed algorithm 1s extended to cloud computing task
scheduling optimization problem. Compared with other
algorithms in small-scale and large- scale task scenarios,
IOOA 1s proved to be an effective solution to cloud
computing task scheduling optimization. In this study,
OO0A is improved and an enhanced version algorithm
(IOOA) 1s proposed. For future research, it can be
expanded from the following directions:

1) For the strategy part, the bidirectional search factor
strategy can be considered to replace the chaotic sequence
for population initialization, and the mfluence of population
initialization by trigonometric function on the performance
of the algorithm can be verified.

2) For cloud computing task scheduling optimization
problem, although IOOA achieves excellent performance in
cloud computing task scheduling optimization problem,
multi-objective optimization can be considered in the future
to explore the strength of the algorithm in multi-objective
optimization performance.

3) For other applications, IOOA can be considered to
solve problems in other fields and explore the universality
of TOOA.
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