
A Novel Framework for Feature Selection Using
Automaton and Hidden Markov Models

Mohsin Ali, Jitendra Choudhary, Anshul Shrotriya, Anil Patidar

Abstract—Feature selection is a crucial pre-processing step
that aims to improve the computational efficiency and perfor-
mance of models by identifying the most relevant features.
In this study, we propose a novel framework for feature
selection that leverages automata and hidden Markov models
(HMM). This framework employs probabilistic modeling and
state transitions to rank features based on their significance
while maintaining computational efficiency. With five different
datasets, we compare the proposed framework to RFE, L1 Reg-
ularization, mutual information, recursive feature elimination
(RFE), Boruta, and Random Forest. Additionally, we evaluate
the Automaton HMM framework based on classification accu-
racy, RMSE, MSE, R2, memory usage, and time complexity.
The results indicate that for both large and small datasets,
the accuracy metrics of the proposed framework outperform
all other methods. Furthermore, memory and time usage are
lower than RFE, Lasso (L1), and mutual information on larger
datasets. The Friedman test confirms statistically significant
improvements over all other approaches. In particular, HMM-
based feature selection cuts down on computational memory
and time while improving classification accuracy. This is shown
by average improvements in accuracy and big drops in feature
dimensionality that don’t hurt model performance. This frame-
work offers a robust and scalable solution for feature selection,
especially in domains that require rapid and accurate decision-
making, such as the Internet of Things, time series systems,
and high-dimensional machine learning applications.

Index Terms—Automaton, HMM, Feature Selection, RFE,
Lasso, MI, Friedman Test.

I. INTRODUCTION

THE rapid development of data makes feature selec-
tion a core component in machine learning, big data,

and statistics. High-dimensional datasets are commonly en-
countered in fields like finance, text classification, biology,
medicine, genomics, and chemistry [1-6].

Feature selection [7-10] is a technique in machine learning
and data analysis that is used to select the important feature
for training any model. This technique improves any model
performance by reducing the dimensionality and fitting, as
well as improving the computational time and use in a wide
range of applications [11, 12]. Today, many feature selection
techniques are available, including the filter method [13],
wrapper method, and embedded method. The filter method
does not depend on the particular machine learning algorithm
or its features found via statistical techniques like correlation

Manuscript received February 18, 2025; revised July 5, 2025.
Mohsin Ali is an Assistant Professor of Computer Ap-

plications, Medicaps University, Indore 453331, INDIA (e-
mail:coolbuddy.next.door@gmail.com).

Jitendra Choudhary is an Associate Professor of Computer Science, Med-
icaps University, Indore 453331, INDIA (e-mail:jitendra.scsit@gmail.com).

Anshul Shrotriya is an Assistant Professor of Department of Elec-
tronic Engineering, Medicaps University, Indore 453331, INDIA (e-
mail:anshul.shrotriya@medicaps.ac.in).

Anil Patidar is an Assistant Professor in Department of Com-
puter Applications, Medicaps University, Indore 453331, INDIA (e-
mail:anilpatidar2404@gmail.com).

and mutual information. The filter approach usually misses
the information about classification, which causes a decrease
in accuracy during the learning process.

In the wrapper method [14, 15], the feature is selected
based on the previous phase to determine whether to add or
remove it from the chosen feature set. The wrapper method
is computationally expensive in terms of cost and time,
which is high compared to the filter method. The wrapper
method includes recursive feature elimination (RFE), forward
selection, and backward elimination.

The third category of feature selection is the embed-
ded method; embedded methods integrate feature selection
directly into the training process of a machine learning
algorithm. Unlike the filters and wrappers method, these
methods use the internal mechanisms of models to evaluate
the relevance of features. Moreover, high-dimensional appli-
cations such as genomics, finance, and NLP also employ the
embedded method.

The Mutual Information (MI) [38] is another algorithm
that measures the statistical dependence between two random
variables. The MI measures how much knowing the value of
one variable reduces the uncertainty of the other variable.
Additionally, MI also accounts for non-linear relationships,
consistency, and changes in random variables using the
Pearson correlation coefficient.

Another method is Lasso L1 regularization [39], which is
used to select the feature selection and also minimize the
absolute mean square error of the coefficient. As a result,
it improves the predictions and accuracy of the model by
combining the ridge regression and subset selection.

Among the conventional methods, recursive feature elim-
ination is a popular technique, particularly used for su-
pervised learning tasks. It systemically removes the least
important feature at each step, retains the model, and, at
every iteration, identifies a subset of features that contribute
the most to the model’s performance. RFE is effective in
many applications [16-24], but its limitation is that it is
computationally expensive. Additionally, in the case of MI
and Lasso (L1) regularization, both algorithms take a large
amount of memory.

Another critical limitation of the convolutional approach to
feature selection is the capture of latent structures or depen-
dencies in the data. This gap is problematic for sequential
data with intricate interdependencies. Furthermore, hidden
feature relationships could be more easily quantifiable using
linear or statistical techniques.

To remove this limitation, we propose a novel framework
to identify the feature selection, which decreases the time and
memory usage, especially on large datasets, and enhances
the accuracy. The novel approach combines two concepts,
Hidden Markov Models (HMM) [25-29] and automatons.
Hidden Markov models are statistical tools that describe

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

how a system changes over time based on hidden factors,
making them ideal for situations where events are connected
in a sequence, like time. By estimating the likelihood of
observing features with a given specific hidden state, HMM
provides the probabilistic measure to select the feature.

This approach employs HMM to calculate log-likelihood
scores for each feature, reflecting their importance in rep-
resenting the dataset’s latent patterns. Furthermore, these
calculated scores are then fed into an automaton, which ap-
plies predefined transition rules and thresholds to categorize
features as ”useful” or ”not useful.” This approach based
on automata gives a stronger and more organized way to
choose the feature, making up for the flaws of other methods
and working with datasets that have hidden or non-linear
dependencies.

In addition, the proposed approach works on large and
small datasets. For larger datasets (greater than 2000), we
set the hidden state to 2, and for small datasets, the hidden
state will be 8. Furthermore, to evaluate the proposed method,
we used 5 different datasets, which are widely used in the
respective fields: RT-IoT22, the flight dataset, which belongs
to the time series, the adult dataset, diabetes, and finally the
wine datasets.

This paper is organized into several sections. Section 2
provides an overview of the background work, while Section
3 details the proposed Hidden Markov Model (HMM) and
automaton. Section 4 emphasizes the experimental analysis,
and Section 5 discusses the results of the proposed method.
Finally, Section 6 concludes the paper.

II. BACKGROUND WORK

This section provides background work information on
HMM, RFE, and automaton for feature selection.

In 2002, Isabelle Guyon [30] et al. proposed a method
for finding feature selection. The author specifically focused
on finding gene selection using Support Vector Machine
methods based on Recursive Feature Elimination (RFE). The
author uses two datasets, which are the leukemia and colon
cancer datasets. The RFE method in both datasets achieves
more accuracy than the baseline method.

Le-Bing Zhang et al. [31] introduce a method to detect
fake faces using advanced texture and color analysis with a
combination of machine learning. The author also increases
the system’s speed with the help of SVM-RFE, which picks
only the most important features and removes unnecessary
ones.

Hyelynn Jeon and Sejong Oh [32], authors, proposed an
ensemble approach for improving the RFE called Hybrid
RFE, which is the combination of SVM-RFE, RF-RFE,
and GBM-RFE and combines their features via weighting
functions—the weight functions of type simple sum and
weighted sum. Additionally, the author evaluates the ensem-
ble approach using eight different datasets.

Dheeb Albashish [33], the author, presents a hybrid meta-
heuristic model designed to solve the feature selection prob-
lem based on binary biogeography optimization with SVM
RFE. The author used eight different datasets to evaluate
the model and also compare it with another filter method
in terms of accuracy and number of selected features. The
model results indicate that the BBO-SVM-RFE is reliable

for searching the feature space to obtain optimal feature
combinations.

Mohammed Awad and Mohammed Awad [34] propose a
method called RFE with Cross-Validation using a Decision
Tree. This method selects the optimal subset of the cluster,
which is 15 from the 42 features of UNSW-NB15, and
evaluates it using several ML classifiers, like decision trees
and tree-based ones. The proposed method achieves 95.56%
compared to the traditional approach of 95.30%.

B. Richhariya [35] proposed a new technique called Uni-
versum Support Vector Machine-based Recursive Feature
Elimination (USVM-RFE). Unlike SVM-RFE, which focuses
only on local data, USVM-RFE incorporates broader and
global information about the data during the feature selection
process. The author used this method and evaluated MRI data
from Alzheimer’s disease, analyzing different brain tissue
like grey matter and white matter. The result indicates that the
new technique has achieved better accuracy than SVM-RFE
in classifying control normal, mild cognitive impairment, and
Alzheimer’s disease patterns.

Li Zhang [36] proposed the Gaussian kernel support vector
machine recursive feature elimination method, which ranks
the feature in a nonlinear way. This paper addresses the
computational challenges of GKSVM-RFE and introduces
two faster versions called Fast GKSVM-RFE (FGKSVM-
RFE). These methods aim to make the feature elimination
process quicker. Furthermore, the author uses first-order
and second-order approximation schemes with approximate
Gaussian kernels.

Stephen Adam et al. [37] propose a model for finding
feature selection from the Hidden Markov and Semi-Markov
models. This paper introduces a new parameter called fea-
ture saliencies, which distinguishes between the states. The
feature saliencies represent the probability relevant to the
distinction between state-dependent and state-independent.
We use an EM algorithm to calculate the MAP estimate
for model parameters. Furthermore, the prior probability
calculates the model cost and feature selection.

While Recursive Feature Elimination (RFE), MI, Boruta,
Lasso, and Hidden Markov Models (HMM) help understand
which features are important, they do not have a clear way
to confidently choose the final set of features, and none of
the authors address how to save time and memory.

To address this gap, we propose integrating an automaton-
based framework, which applies logical transition and rules
based on log-likelihood thresholds. This new combination
enhances the ability of HMM to identify hidden patterns and
the logical consistency of automaton, allowing for a more
effective and reliable way to select features.

III. PROPOSED METHODOLOGY

In this section, we elaborate on each section of the au-
tomaton, from data pre-processing to final feature selection.

A. Automaton Transition Diagram

The automaton flow diagram Fig. 1 encapsulates the
feature selection process combining automaton theory and
Hidden Markov Models (HMM). It consists of sequential
transitions (S1 to S6, dead state), representing distinct feature
evaluation steps. We will elaborate each step based on the

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

performed mathematical function, ensuring that each automa-
ton step aligns with both theoretical and practical aspects. An
automaton S= (Q,Σ,δ, q0, F) is constructed, where:

1) Q : A finite set of states representing potential deci-
sions for each feature (qUseful, qNotUseful).

2) Σ : The alphabet consisting of inputs such as log-
likelihood scores Li of each feature.

3) δ:Q×Σ→Q : The transition function based on the
comparison between Li and the threshold τ .

4) q0 : The initial state (qUndecided).
5) F : A final states (qUseful , qNotUseful).
1) S1: Represent the input State: In S1, this state serves

as the starting point where we input data using the sklearn
library and read the data file with the pandas library. Given
a dataset X with m samples and n features:

X= {xij |i∈[1,m],j∈[1,n]}

And y= Target.
2) S2: Data Discretize State: From the S1 state, it takes

the input, and after processing it, it goes to the S2, which
indicates that the data discretization process is complete. If
S2 fails, it goes to a dead state, indicating a data failure
has occurred. The role of the S2 state is mathematically
expressed as follows: Each column xj of X is discretized
into q quantile bins:

Dij=Q (xij , q)

where Q(x, q) is the quantile function that maps a continuous
value x into one of q discrete bins. Each value in xj is
assigned a label l in the range {0, 1, . . . ,q−1}.

3) S3: One hot encoding: In State S3, the S2 state gets
the input, converts it into one hot encoding, and reaches the
state S3 after completing the process. After reaching S3, we
still change the parameters of one hot encoding and re-run
the method. The State S3 is mathematically represented by:
For each discretized feature Dj , one-hot encoding transforms
each bin label into a binary vector representation:

Eij= [e1, e2, . . . ,eq]

where ek= 1 if xij belongs to bin kr and ek= 0 other-
wise.Thus, the transformed datasets E becomes:
E= {Ej |j∈[1,n]} , with Ej as the one-hot-encoded matrix
of column xj .

4) S4: Hidden Markov Model and Log Likelihood calcu-
lation: The automaton transitions from state S3 to S4 upon
receiving the log-likelihood scores as input. After completing
the transition for a column, the process iteratively evaluates
the remaining columns. In the S4 state, each feature is
modeled using a Hidden Markov Model (HMM) We model
each column Ej using a Hidden Markov Model (HMM) with
k hidden states.

θj= (π,A,B)

where:
1) π is the initial state distribution.
2) A is the state transition probability matrix:

A= {akl} , akl=P (zt+1=l|zt=k)

3) B is the emission probability matrix:

B= {bkv} , bkv=P (xt=v|zt=k)

For the sequence of observations Ej= {e1, e2, . . . ,em}, the
likelihood is given by:

P (Ej |θj) =
∑

z1,z2,...,zm

πz1bz1e1

m∏
t=2

azt−1ztbztet

Furthermore the EM algorithm is used to estimate following
parameter where in E-step we Compute the expected state
probabilities and in M-step we update the parameters. E-Step:

θj= (π,A,B)

γt(k) =P (zt=k|Ej , θj)
ξt(k, l) =P (zt=k, zt+1=l|Ej , θj)

M-step: Update π,A, and B :

πk=γ1(k)

akl=
∑m−1

t=1 ξt(k,l)∑m−1
t=1 γt(k)

bkv=
∑m

t=1 γt(k)·I(et=v)∑m
t=1 γt(k)

After iterating each column via the EM step, then for each
feature xj , the log-likelihood of the observed sequence Ej
under the fitted HMM θj is

Lj= logP (Ej |θj)

. This score measures how well the HMM explains the
observed data for feature xj . If it fails to perform the HMM
operation, the process will stop and enter the dead state.

5) State 5: Threshold State: The S4 state takes the input
as the loglikelihood score for each feature and reaches the
S5 state using the 25th percentile threshold function, denoted
by τ . In Fig. 1, the transition state from S4 to S5 signifies
the adjustment of the threshold value.

τ=Percentile25 ({L1,L2, . . . ,Ln})

For each feature i, the log-likelihood score Li is compared
to τ :

δ (q0,Li) =

{
qUseful , if Li>τ
qNotUseful , if Li≤τ

6) State 6: Final State: In the final state, S6, the output
features greater than the threshold are in the final state from
S5. For the ”Useful” feature (qUseful), these indices are
included in the set of selected features:

S= {i|δ (q0,Li) =qUseful }

IV. EXPERIMENT ANALYSIS

In the experiment phase, we used five different datasets
to evaluate the proposed framework, which is HMM with
Automaton compared to RFE. Section A covers the details of
the datasets details. Section B covers the Experiment setup.
Section C,D,E,F and G covers the Feature selection process
using HMM Automaton and other method.

A. Datasets Details

To evaluate the Automaton-HMM and other methods, we
used five different datasets, which are shown in Table 1.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 1. Automaton- HMM feature selection sequence Diagram

TABLE I Summary of datasets, including the total number
of rows (data points) and columns (features).

Dataset Rows Columns
Diabetes Dataset [41] 769 9
Time Series Dataset[42] 4895 30
RTIOT Dataset [43] 123117 84
Adult Dataset [44] 48842 15
Wine Dataset [45] 6497 12

B. Experiment setup

The Automaton-HMM is evaluated on Google Colab Pro,
which has Google TPU, 334 GB RAM, and a 100 GB
hard disk. Furthermore, we used the following libraries to
build Automaton HMM and RFE with the help of Scikit-
learn, Seaborn, Matplotlib, Numpy, ucimlrepo, hmmlearn,
and Pandas.

C. HMM-Automaton Framework Process

Firstly, in State S1, we import the dataset from Google
Colab Drive and load it into the workspace. After the data
is split, move on to State S2. This state is where the
discretization process is applied to the columns, say ”X,”
as seen in Fig. 2. This turns continuous values into quantile
bins so that Hidden Markov Models (HMM) can model them
better. Following State S2, we apply the one-hot encoding
process and proceed to State S3, as depicted in Fig. 1.

In State S3 to S4, we apply the HMM algorithm to each
column as shown in Fig. 3 and Fig. 4. For every column,
we train an HMM model and compute its log-likelihood
score, which quantifies the column’s suitability for feature
selection. The log-likelihood scores are analyzed from State
S4 to S5, and a graph is plotted to visualize their distribution.
The 25th percentile threshold, used to differentiate useful

and non-useful columns, is marked on the graph. Finally,
we identify the columns with log-likelihood scores above
the threshold as useful features in states S5 to S6. We refer
to these selected columns, which we will retain for further
processing, as selected features.

1) Dataset Analysis 1: Considering Dataset 1 has 769
rows and 9 columns. After using the automaton-based HMM,
the algorithm determines how many features were chosen
for Dataset 1 based on the log likelihood score, which is
illustrated in Fig. 5. The histogram displays the distribution
of log-likelihood scores across columns. The scores cluster
around -1045, with a separate grouping near -800. The
red dashed line indicates the 25th percentile score, which
serves as the threshold for feature selection. Features with
scores above this threshold are retained for further analysis.
Once we determine the log likelihood score, we display
the final HMM feature below. For further HMM analysis,
cumulative log-likelihoods are shown in Fig. 6, which help
us to understand the cumulative ”variance” of the feature as
shown in Fig. 6. The log-likelihood values drop consistently
and steeply, indicating that adding more features causes the
model to penalize the likelihood score significantly.

2) Dataset Analysis 2: In Dataset 2 (4895 × 30), after
using the automaton-based HMM, the algorithm chooses the
selected features based on the log-likelihood score shown in
Fig. 7. This score, called the log-likelihood score of HMM,
shows how the features are chosen. This score, known as
the log-likelihood score of HMM, indicates how features
are selected. This threshold, called the log-likelihood score
of HMM, represents the feature selection setup. The log-
likelihood scores for Dataset 2 are more widely distributed,
with a concentration around -6500 and a few outliers near
-3000. The 25th percentile (red dashed line) is around -
6450. The selected features above this threshold eliminated

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 2. Discretization Process

Fig. 3. HMM small state

Fig. 4. HMM for large state

Fig. 5. Log-Likelihood scores of Dataset 1

those with extremely low scores that indicated less relevance.
The cumulative log-likelihood graph in Fig. 8 shows a sharp
drop in log-likelihood for the first 10 features, emphasizing
how important they are. Beyond the first 10 features, the
contribution to the log-likelihood diminishes significantly,
creating a ”plateau effect.”

3) Dataset Analysis 3: The automaton-based HMM de-
termines the selected features for Dataset 3, known as the

IOT dataset (123117 × 84), based on the log-likelihood
score, as shown in Fig. 9. The threshold score defines the
feature selection process. Dataset 3 displays a highly skewed
distribution with most log-likelihood scores concentrated
between -25000 and 0, but with outliers reaching as low
as -150000. The 25th percentile is around -50000, and only
features with scoring above this value were retained, as they
are more likely to contribute valuable information. A sharp
decline near the end suggests the last few features introduce
significant noise or unnecessary complexity, as shown in Fig.
10.

4) Dataset Analysis 4: For Dataset 4, which is wine (6497
× 12), the HMM algorithm applies the log-likelihood score
for feature selection as shown in Fig. 11. The histogram
for Dataset 4 shows a peak around -7800, with a few
lower-frequency scores between -8500 and -6500. The 25th
percentile threshold is approximately -7800, resulting in the
selection of features scoring above this mark. Additionally,
the cumulative log-likelihood graph shows that the decline
in log-likelihood is uniform, which means that each feature
contributes equally to the cumulative score, as shown in Fig.
12.

5) Dataset Analysis 5: Lastly, for adult Dataset 5
(48842*15), the HMM algorithm uses the log-likelihood
score as the selection threshold, as represented in Fig. 13.
The log likelihood scores in Dataset 5 cluster between
-60000 and 0, with a steep drop-off for scores below

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 6. Cumulative Log-Likelihoods Score of Dataset 1

Fig. 7. Log-Likelihood scores of Dataset 2

-60000. The 25th percentile, marked by the red dashed line,
is approximately -59000. Features above this threshold were
selected for further analysis. The tapering effect suggests
diminishing returns from adding more features; the first five
to six features are the most critical. In contrast, additional
features add minimal predictive value or even degrade
performance, as shown in Fig. 14.

The log-likelihood score distributions across all datasets
reveal varied patterns, ranging from tightly clustered scores
to highly skewed distributions. The 25th percentile threshold
consistently filtered out low-scoring features, which are likely
to contribute less to model performance. The automaton-
based HMM demonstrated its ability to identify informative
features across datasets with different score distributions.
Overall, this approach reduced feature dimensionality effec-

tively while retaining features most relevant for the modeling
tasks.

D. RFE, Lasso (L1) Regularization, Mutual Information,
Random Forest, and Boruta

Recursive Feature Elimination (RFE) is a wrapper-based
feature selection method that iteratively eliminates the least
important features to optimize model performance. Unlike
our proposed Hidden Markov Model (HMM) approach which
automatically determines feature importance, RFE requires
manual specification of the n features to select parameter.
To ensure fair comparison across all methods, we standard-
ized this parameter by using the same number of features that
HMM selected for each dataset. This consistent framework
was applied uniformly across all five datasets and extended
to other methods including Lasso (L1) regularization, Mutual
Information (MI), Random Forest (RF), and Boruta. By
maintaining identical feature set sizes for all algorithms, we
enabled direct performance comparisons while preserving
each method’s unique selection criteria. The complete feature
selection results for all datasets and methods are presented
in the following sections.

V. RESULT AND DISCUSSION

After finding the feature selection using both the HMM
automaton, RFE, Lasso (L1), mutual information, RF, and
Boruta. we now evaluate the framework result in terms of
execution time, memory usage, accuracy, precision, sup-
port, recall, F1-score, RMSE, MSE, and R2. Implementing
the Automaton HMM RFE, Lasso (L1), MI, Boruta, and
RF, we train and test using a neural network with cross-
validation=5. By default, the neural network parameters
are no of layer=100, activation=’relu’, and solver=’adam’.
For time series datasets, we implemented Long Short-Term
Memory (LSTM) networks to better capture temporal depen-
dencies in the data.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 8. Cumulative Log-Likelihoods Score of Dataset 2

Fig. 9. Log-Likelihood scores of Dataset 3

A. Dataset 1 Result Analysis

For the diabetes dataset, HMM provides a balanced trade-
off between accuracy and memory efficiency. Compared to
MI, HMM achieves higher accuracy (0.7727 compared to
0.7403) while using significantly less memory than RFE
(1.16 MB compared to 0.37 MB). RFE, although compa-
rable in accuracy (0.7662), is highly memory-intensive and
computationally expensive, with a selection time of only 0.12
seconds but larger memory costs, making it impractical for
resource-constrained environments. Lasso (L1) demonstrates
the lowest memory usage (0.11 MB) and fastest execution
time (0.02 s), but slightly underperforms in accuracy (0.7727)
compared to HMM. Random Forest (RF) emerges as a
competitive baseline with an accuracy of 0.7597 and an
F1-score of 0.6726, closely matching HMM, while achiev-
ing low memory consumption (0.31 MB) and moderate
feature selection time (1.42 s). RF also matches HMM
in recall (0.6909) and MSE (0.24), making it a practical

alternative when execution speed and resource usage are
priorities. Boruta shows the highest memory footprint (3.77
MB) among all methods with comparable execution time to
HMM (9.42 s compared to 8.19 s), yet delivers the lowest
accuracy (0.7338) and F1-score (0.6239) of all methods,
suggesting it may be over-selecting features for this particular
dataset, as shown in Table II. To further analyze classification
performance, Fig. 15 illustrates the confusion matrix for each
model. HMM demonstrates a balanced distribution of TP and
TN, indicating effective classification.

B. Dataset 2 result Analysis
The time series dataset is where HMM truly excels,

achieving an accuracy of 0.9998—the highest among all
models. Time series data is inherently sequential, and HMM,
designed for handling hidden state transitions, performs
exceptionally well. In contrast, RFE requires an enormous
286.65 MB of memory, making it highly inefficient. HMM,
in comparison, uses only 1.40 MB, proving that it is both
accurate and memory-efficient for time series applications.
While Lasso (L1) achieves faster execution (12.98 seconds)
and MI uses lower memory (4.63 MB), both underperform
in terms of accuracy (0.9865 and 0.9986, respectively).
Boruta demonstrates an interesting middle-ground perfor-
mance, with accuracy (0.9912) slightly below HMM but
superior to Lasso, while maintaining reasonable memory
usage (15.74 MB) and execution time (24.70 seconds), mak-
ing it potentially suitable when a balance between HMM’s
complexity and Lasso’s simplicity is desired. Random Forest
(RF) demonstrates strong performance with an accuracy of
0.9961 and an F1-score of 0.9953, nearly matching HMM,
but at the cost of significantly higher memory usage (42.53
MB) and longer feature selection time (59.64 seconds).
This trade-off suggests that RF is suitable when accuracy
is critical and memory is less constrained, as shown in
Table III. Despite HMM’s slightly higher execution time
than MI and Lasso, the drastic improvement in predictive

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 10. Cumulative Log-Likelihoods Score of Dataset 3

TABLE II Performance Comparison of HMM, RFE, Lasso (L1), and MI on Dataset 1

Metrics HMM RFE Lasso (L1) MI RF Boruta
Accuracy 0.7727 0.7662 0.7727 0.7403 0.7597 0.7338
Precision 0.6923 0.6727 0.6786 0.6364 0.6552 0.6296
Recall 0.6545 0.6727 0.6909 0.6364 0.6909 0.6182
F1-Score 0.6729 0.6727 0.6847 0.6364 0.6726 0.6239
MSE 0.23 23 0.23 0.26 0.24 0.27
RMSE 0.48 0.48 0.48 0.51 0.49 0.52
R-Squared (R2) 0.01 -0.02 0.01 -0.13 -0.05 -0.16
Feature Selection Time (s) 8.19 0.12 0.02 0.17 1.42 9.42
Peak Memory Usage (MB) 1.16 0.37 0.11 0.32 0.31 3.77

Fig. 11. Log-Likelihood scores of Dataset 4

performance justifies its application in real-world scenarios
such as financial forecasting or anomaly detection. Fig. 17
illustrates the confusion matrix for each model, where HMM
demonstrates a balanced distribution of TP and TN, while
Boruta shows marginally more false positives correspond-
ing to its lower precision (0.9820 compared to HMM’s
perfect 1.0000). Additionally, Fig. 16 depicts the LSTM

model performance in terms of actual and predicted features,
providing further context for the feature selection methods’
effectiveness.

C. Dataset 3 result Analysis
The Wine dataset reveals nuanced performance trade-

offs among feature selection methods, with MI achieving
the highest accuracy (0.5700) and R2 score (0.22), while
HMM demonstrates the most balanced profile across met-
rics. Notably, Boruta matches RFE’s accuracy (0.5623) but
incurs substantially higher memory costs (18.18 MB com-
pared to 4.32 MB)—the worst memory efficiency among
all methods—without delivering compensating performance
benefits. HMM maintains competitive accuracy (0.5654)
with moderate memory usage (3.38 MB), though its feature
selection time (159.03 seconds) is orders of magnitude
slower than other approaches. Lasso emerges as the most
resource-efficient option with minimal memory footprint
(0.85 MB) and rapid execution (1.73 seconds), albeit with
slightly reduced accuracy (0.5454). RF provides a compelling
middle ground, offering reasonable accuracy (0.5485) with
excellent memory efficiency (1.02 MB) and fast processing
(1.58 seconds). The tight clustering of F1-scores (0.5206-
0.5455) and error metrics (MSE 0.57-0.63, RMSE 0.76-
0.79) suggests the Wine dataset’s features may have inherent
limitations for clear discriminative separation, as shown in

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 12. Cumulative Log-Likelihoods Score of Dataset 4

TABLE III Performance Comparison of HMM, RFE, Lasso (L1), and MI on Dataset 2

Metrics HMM RFE Lasso (L1) MI RF Boruta
Accuracy 0.9998 0.9992 0.9865 0.9986 0.9961 0.9912
Precision 1.0000 0.9990 0.9715 0.9990 0.9921 0.9820
Recall 0.9995 0.9990 0.9965 0.9975 0.9985 0.9970
F1-Score 0.9998 0.9990 0.9839 0.9983 0.9953 0.9894
MSE 13039.26 39961.56 20154313.14 418850.87 11556013.05 14556713.64
RMSE 114.19 199.90 4489.36 647.19 3399.41 3815.33
R-Squared (R2) 1.00 1.00 0.97 1.00 0.98 0.98
Feature Selection Time (s) 4.09 2397.86 12.98 5.69 59.64 24.70
Peak Memory Usage (MB) 1.40 286.65 61.51 4.63 42.53 15.74

Fig. 13. Log-Likelihood scores of Dataset 5

Table IV. For winemaking applications where chemical mea-
surements exhibit complex correlations, these results indicate
that simpler methods like Lasso or RF may be preferable
when operational efficiency is prioritized, while HMM’s
marginally better performance could justify its computational
overhead for quality-critical applications. Fig. 18 illustrates

the confusion matrix for each model. HMM demonstrates
a balanced distribution of TP and TN, indicating effective
classification.

D. Dataset 4 result Analysis

On the IoT dataset, RFE demonstrates strong accuracy
(0.9803) but proves impractical for deployment due to ex-
cessive memory consumption (1237.49 MB). HMM achieves
superior accuracy (0.9921) with significantly reduced mem-
ory requirements (327.66 MB) and reasonable execution time
(163.29 seconds), making it suitable for resource-constrained
edge devices. While Lasso (0.9930) and MI (0.9946) show
marginally better accuracy than HMM, their resource de-
mands—436.88 MB of memory and 2712.80 seconds of exe-
cution time for Lasso, and 315.27 MB of memory and 53.81
seconds of execution time for MI—diminish their practical
advantages. Boruta presents an interesting case, achieving
near-top accuracy (0.9937) comparable to RF (0.9949), but
at the cost of extreme memory usage (655.43 MB) and pro-
longed execution time (290.15 seconds), suggesting it may
be over-selecting features for IoT applications. RF emerges
as the most balanced solution, delivering the highest accu-
racy (0.9949) with exceptional efficiency—lowest memory
footprint (118.20 MB) and fastest execution (4.97 seconds)
among all methods, as shown in Table V. This performance

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 14. Cumulative Log-Likelihoods Score of Dataset 5

TABLE IV Performance Comparison of HMM, RFE, Lasso (L1), and MI on Dataset 3

Metrics HMM RFE Lasso (L1) MI RF Boruta
Accuracy 0.5654 0.5623 0.5454 0.5700 0.5485 0.5623
Precision 0.5393 0.5680 0.5237 0.5520 0.5460 0.5657
Recall 0.5654 0.5623 0.5454 0.5700 0.5485 0.5623
F1-Score 0.5390 0.5404 0.5206 0.5455 0.5220 0.5388
MSE 0.58 0.63 0.60 0.57 0.60 0.63
RMSE 0.76 0.79 0.77 0.76 0.78 0.79
R-Squared (R2) 0.21 0.15 0.19 0.22 0.19 0.15
Feature Selection Time (s) 159.03 6.25 1.73 0.60 1.58 6.41
Peak Memory Usage (MB) 3.38 4.32 0.85 2.36 1.02 18.18

profile, combined with strong F1-scores (0.9948) and error
metrics (MSE 0.35, RMSE 0.59), positions RF as the optimal
choice for scalable IoT deployments. The confusion matrices
in Fig. 19 to Fig 24. confirm these findings, with both RF
and HMM showing balanced TP and TN, while Boruta’s
high memory consumption doesn’t translate to proportional
accuracy gains. For industrial IoT implementations where
hardware resources are constrained, HMM provides the best
accuracy-to-efficiency ratio, whereas RF dominates in sce-
narios permitting slightly higher memory allocation.

E. Dataset 5 result Analysis

The Adult dataset analysis reveals critical trade-offs in
handling large-scale demographic data, where HMM demon-
strates superior efficiency with accuracy (0.5830), surpassing
both RFE (0.5706) and Lasso (0.5711), while maintaining
low memory consumption (10.79 MB). Boruta emerges as a
paradoxical case - achieving comparable accuracy (0.5831)
and the highest precision (0.6391) among all methods, but at
an extreme memory cost (134.28 MB) and prohibitive exe-
cution time (109.74 seconds), making it impractical despite
its marginally better precision. While MI records the peak
accuracy (0.5842), its memory demand (40.82 MB) nearly
quadruples HMM’s footprint for merely 0.2% improvement,
failing to justify the resource overhead. RF presents a com-
pelling alternative with balanced metrics—matching HMM’s

accuracy (0.5836) and recall (0.5836) while delivering higher
precision (0.6329), though its memory usage (44.56 MB) and
processing time (6.92 s) remain disadvantageous for edge
deployment. While Lasso’s accuracy limitations overshadow
its computational efficiency (2.78 seconds), RFE’s memory
intensity (41.66 MB) contradicts the needs of large-scale
applications. The negative R2 scores for all methods (-
0.06 to -0.11) indicate that there are basic issues with how
features are represented in this dataset, which no selection
method can completely fix, as shown in table VI. For real-
world demographic analysis systems, HMM’s combination
of respectable accuracy (within 0.2% of top performers),
minimal memory footprint (8-12× lower than Boruta and
RF), and moderate runtime establishes it as the most vi-
able solution, particularly when deployed across distributed
systems processing sensitive census data. Fig. 20 illustrates
the confusion matrix for each model. HMM demonstrates
a balanced distribution of TP and TN, indicating effective
classification.

F. Key Points of Datasets Analysis

1) When analyzing time series data (Dataset 2), our
HMM framework demonstrates exceptional perfor-
mance, achieving near-perfect accuracy (99.98%)
while being remarkably resource-efficient. Compared
to RFE’s 99.92% accuracy, HMM uses 200 times less

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

TABLE V Performance Comparison of HMM, RFE, Lasso (L1), and MI on Dataset 4

Metrics HMM RFE Lasso (L1) MI RF Boruta
Accuracy 0.9921 0.9803 0.9930 0.9946 0.9949 0.9937
Precision 0.9924 0.9807 0.9935 0.9946 0.9950 0.9939
Recall 0.9921 0.9803 0.9930 0.9946 0.9949 0.9937
F1-Score 0.9920 0.9800 0.9931 0.9945 0.9948 0.9937
MSE 0.53 0.51 0.50 0.39 0.35 0.39
RMSE 0.73 0.72 0.71 0.63 0.59 0.63
R-Squared (R2) 0.91 0.92 0.92 0.94 0.94 0.94
Feature Selection Time (s) 163.29 1052.53 2712.80 53.81 4.97 290.15
Peak Memory Usage (MB) 327.66 1237.49 436.88 315.27 118.20 655.43

TABLE VI Performance Comparison of HMM, RFE, Lasso (L1), and MI on Dataset 5

Metrics HMM RFE Lasso (L1) MI RF Boruta
Accuracy 0.5830 0.5706 0.5711 0.5842 0.5836 0.5831
Precision 0.6485 0.5878 0.6076 0.6183 0.6329 0.6391
Recall 0.5830 0.5706 0.5711 0.5842 0.5836 0.5831
F1-Score 0.4941 0.4814 0.4871 0.4925 0.4911 0.4894
MSE 1.01 1.04 1.06 0.96 0.98 1.00
RMSE 1.00 1.02 1.03 0.98 0.99 1.00
R-Squared (R2) -0.06 -0.09 -0.11 -0.00 -0.03 -0.04
Feature Selection Time (s) 31.47 58.29 2.78 3.19 6.92 109.74
Peak Memory Usage (MB) 10.79 41.66 10.95 40.82 44.56 134.28

memory (just 1.4 MB versus 286.65 MB) and pro-
cesses data 586 times faster (4.09 seconds compared
to nearly 40 minutes). These dramatic efficiency gains
make HMM particularly valuable for edge computing
applications in financial markets or industrial IoT sys-
tems where both precision and resource constraints are
critical.

2) For large-scale applications like the Adult dataset
(Dataset 5), HMM maintains highly competitive per-
formance. Its accuracy of 58.30% comes within 0.2%
of the top performer (MI at 58.42%) while using only a
quarter of the memory (10.79 MB vs MI’s 40.82 MB).
What’s more, HMM delivers better balanced perfor-
mance than alternatives - its precision-recall metrics
(64.85% precision/58.30% recall) outperform Lasso’s
efficiency-focused approach (60.76%/57.11%) without
incurring the heavy memory costs of Random Forest
(44.56 MB).

3) In real-world IoT deployments, HMM’s advantages
become even more apparent. It provides three times
better memory efficiency than accuracy-equivalent al-
ternatives (327.66 MB vs Boruta’s 655.43 MB) while
consistently maintaining sub-second response times for
time-sensitive sensor data processing.
Thus, HMM is a superior feature selection framework
for improving classification performance across diverse
datasets and its robustness as a universal feature se-
lection framework, particularly for applications where
hardware constraints prohibit resource-intensive meth-
ods like RFE or Boruta.

G. Time Complexity of HMM

1) In the discretization process, it takes O(nlogn), where
n is the number of rows (samples) in each column.

2) For One-Hot Encoding: OneHot Encoder transforms
each discretized column into one-hot encoded format.
Additionally, Encoding scales linearly with the number
of rows and unique categories per column.

O(n·c)

where c is the average number of categories across all
columns.

3) Multinomial HMM is fitted for each column. For niter
iterations, k hidden states, and c categories, the training
complexity of the HMM is approximately:

O
(
niter ·k2·c·n

)
4) For threshold calculation the framework (O(mlogm))

and selecting a percentile (O(1).
5) So the total complexity is :

O(mlogm)

6) Filtering the Useful Columns is O(m).
7) Selecting Useful Columns means create a

new DataFrame with only selected columns.
O (n·museful), where museful is the number of
”useful” columns.

8) Total Complexity of all steps in HMM, the dominant
term is from the HMM fitting step:

O
(
m·niter ·k2·c·n

)
If niter , k, and c are relatively small constants. For an
example k= 2,c= 4,niter = 1000), the time complex-
ity simplifies to:

O(m·n)

for large n and m.

H. Time Complexity of RFE
The time complexity of Recursive Feature Elimination

(RFE) is
1) For each feature subset the training complexity is

O(f ·n), where f is the number of features:

O(t·f ·n)

where t is the number of training iterations (depends
on the model).

2) Since RFE removes one feature in each iteration, it
repeats the training process O(m) times for m features.

3) The Total complexity for RFE is :

O
(
m2·f ·n

)

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

(a) Confusion Matrix of HMM (b) Confusion Matrix of RFE

(c) Confusion Matrix of Lasso (L1)
(d) Confusion Matrix of MI

(e) Confusion Matrix of RF
(f) Confusion Matrix of Boruta

Fig. 15. All Confusion Matrix of dataset 1

I. Time Complexity of Lasso (L1) Regularization

Lasso (L1) Regularization solves an optimization problem
with an `1 regularization term. The computational complexity
depends on the solver used:

1) Coordinate Descent Approach: O(np) per iteration.
2) Least-Angle Regression (LARS) Approach: O(p3).

3) Gradient Descent-Based Solvers: O(np2).
where:

4) n is the number of samples (data points).
5) p is the number of features (predictors).

For sparse data, coordinate descent is more efficient,
making the complexity approximately O(np). For dense data

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

(a) LSTM Model of HMM (b) LSTM Model of RFE

(c) LSTM with Lasso (L1) regularization (d) Confusion Matrix of MI

(e) LSTM Model of RF (f) LSTM Model of Boruta

Fig. 16. All LSTM Model of Dataset 2

with a large number of features, LARS can have a higher
complexity of O(p3).

J. Time Complexity of Mutual Information

1) Discrete Features (Histogram-based Estimation):
O(npk)

2) Continuous Features (Kernel Density Estimation):
O(n2p)

3) Nearest Neighbor-Based Estimation: O(np log n)
where:

4) n is the number of samples (data points).
5) p is the number of features.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

(a) Confusion Matrix of HMM (b) Confusion Matrix of RFE

(c) Confusion Matrix of Lasso(L1) (d) Confusion Matrix of MI

(e) Confusion Matrix of RF (f) Confusion Matrix of Boruta

Fig. 17. All Confusion Matrix of Dataset 2

6) k is the number of bins (for discrete MI estimation).

K. Random Forest Time Complexity

The computational time complexity of the Random Forest
algorithm is summarized below:

• Training Time: O(T · n · log n)
• Prediction Time (per sample): O(T · log n)

Where:
• T = Number of trees
• n = Number of training samples

Assuming:

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

(a) Confusion Matrix of HMM
(b) Confusion Matrix of RFE

(c) Confusion Matrix of Lasso(L1)
(d) Confusion Matrix of MI

(e) Confusion Matrix of RF
(f) Confusion Matrix of Boruta

Fig. 18. All Confusion Matrix of Dataset 3

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 19. Confusion Matrix of HMM of Dataset 4

Fig. 20. Confusion Matrix of RFE of Dataset 4

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 21. Confusion Matrix of Lasso (L1) of Dataset 4

Fig. 22. Confusion Matrix of MI of Dataset 4

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 23. Confusion Matrix of RF of Dataset 4

Fig. 24. Confusion Matrix of Boruta of Dataset 4

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

(a) Confusion Matrix of HMM
(b) Confusion Matrix of RFE

(c) Confusion Matrix of Lasso (L1)
(d) Confusion Matrix of MI

(e) Confusion Matrix of RF
(f) Confusion Matrix of D5 CM Bourta

Fig. 25. All Confusion Matrix of Dataset 5

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

• Trees are balanced ⇒ depth ∼ log n
• Feature selection per split is constant or

√
d (not dom-

inant)

L. Time Complexity of Boruta

The Boruta algorithm exhibits significant computational
demands, as evidenced by both theoretical analysis and
empirical results from our experiments.

1) Theoretical:

O(T · (n · d2 + d · n log n)) per iteration (1)

where:
• T : Number of trees in Random Forest (de-

fault=500)
• n: Number of samples
• d: Number of features

M. Memory Complexity of HMM

1) Discretization plus One-Hot Encoding requires
O(n·m·c), where c is the number of categories per
feature.

2) HMM Model Parameters: Requires O(m·k·c) for k-
state HMMs.

3) Total memory Complexity is : O(n·m·c).

N. Memory Complexity of RFE

1) the models parameters for each feature subset is O(f)
: O

(
m2·f

)
2) Data Storage: Similar to the original dataset

size, O(n·m).So total Memory Complexity is:
O
(
m2·f+n·m

)
.

O. Memory Complexity of Mutual Information

Mutual Information (MI) requires storing probability dis-
tributions, feature values, and statistical estimations. The
memory complexity depends on the estimation method:

1) Histogram-Based Estimation: O(pk)
2) Kernel Density Estimation (KDE):O(np)
3) Nearest Neighbor-Based Estimation:O(np)

where:
1) n is the number of samples.
2) p is the number of features.
3) k is the number of bins (for discrete MI estimation).
The key Observations is:
1) For discrete features, the memory requirement is low

(O(pk)) since only probability tables are stored.
2) For continuous features using KDE, memory usage

increases to O(np) due to kernel computations.
3) Nearest-neighbor-based methods require storing dis-

tances, leading to O(np) memory consumption.

P. Memory Complexity of Lasso (L1) Regularization

Lasso (L1) stores the feature matrix, optimization vari-
ables, and regularization parameters. The memory complex-
ity is:

1) Coordinate Descent: O(np)
2) Least-Angle Regression (LARS): O(p2)

3) Gradient-Based Methods: O(np+ p2)

where:
1) n is the number of samples.
2) p is the number of features.
1) Lasso memory usage mainly depends on storing the

feature matrix (O(np)).
2) LARS is more memory-intensive (O(p2)), making it

less suitable for high-dimensional data.
3) Gradient-based solvers add extra memory overhead for

storing gradients (O(np+ p2)).

Q. Memory Complexity of Random Forest

The memory complexity of Random Forest is influenced
by the number of trees (T), the number of training samples
(n), and the number of features (d). During training, each
decision tree may grow up to O(n) leaf nodes in the worst-
case scenario.

1) Training Memory:

O(T · n)

This accounts for storing all tree structures and associ-
ated node data (e.g., split feature, threshold, and child
pointers).

2) Prediction Memory:

O(T · h)

where h is the average height of a decision tree,
typically O(log n) for balanced trees.

3) Additional Overhead: When computing feature impor-
tances or out-of-bag (OOB) estimates, extra memory
is used for intermediate storage of scores and sample
tracking.

R. Memory Complexity of Boruta

1) Theoretical:

O(T ·n·d) (RF storage)+O(d2) (feature comparisons)
(2)

S. Resource Efficiency Analysis

The comprehensive memory evaluation reveals distinct
efficiency patterns across methods. Random Forest (RF)
demonstrates strong performance, particularly on Dataset
3 (RTIOT), where it uses only 118.20 MB compared to
RFE’s 1237.49 MB and Lasso’s 436.88 MB. The HMM
automaton shows exceptional efficiency on smaller datasets,
consuming just 1.16 MB for Dataset 1 (Diabetes) and 1.40
MB for Dataset 2 (Time Series), though its memory usage
grows to 327.66 MB for RTIOT. Notably, Boruta exhibits
extreme variance—while efficient on Diabetes (3.77 MB), it
becomes memory-intensive on Dataset 4 (Wine) at 655.43
MB. RF maintains consistent sub-50 MB usage across all
datasets except RTIOT, while RFE shows particularly high
demands, exceeding 1200 MB for RTIOT, as shown in Fig.
21. These patterns suggest RF and HMM offer the most
scalable solutions for memory-constrained applications, with
RF being preferable for huge datasets.

The time comparison analysis reveals method-specific
tradeoffs. Mutual Information (MI) demonstrates consistently

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 26. Memory Usage Graph of Different Method

fast execution, completing Dataset 1 (Diabetes) in 0.17 sec-
onds and Dataset 5 (Adult) in 3.19 seconds. Random Forest
(RF) shows excellent performance on Dataset 3 (RTIOT) at
4.97 seconds, though it requires 59.64s for Dataset 2 (Time
Series). The HMM automaton runs at a good speed—taking a
moderate 8.19 seconds for the smaller Diabetes dataset and
a longer 163.29 seconds for the larger RTIOT dataset. In
contrast, RFE and Lasso show extreme time demands: RFE
requires 2397.86 s for time series data, while Lasso spikes to
2712.80 seconds for RTIOT processing. Interestingly, Lasso’s
minimal 0.02s time on Diabetes suggests excellent small-
dataset performance that doesn’t scale well, as shown in
Fig. 22. This comprehensive timing analysis positions MI
as the fastest method overall, with RF being optimal for
certain large datasets (especially RTIOT), while HMM offers
the most consistent balance between speed and predictive
capability across all dataset types.

T. Feature Heatmap Analysis

Across all datasets, HMM (Hidden Markov Model) ex-
hibits varying degrees of alignment with other feature selec-
tion methods, suggesting its performance is highly dependent
on the dataset’s characteristics as shown in Figure from Fig.
23 to Fig. 27. In the Diabetes dataset, HMM shows perfect
agreement (1.00) with MI (Mutual Information) and strong
similarity (0.71) with RFE (Recursive Feature Elimination),
Lasso, and RF (Random Forest), indicating it selects features
consistently with these methods. However, in the Time Series
dataset, HMM’s highest similarity is only 0.62 with RFE,
Lasso, MI, and Boruta, reflecting weaker consensus, likely
due to the complexity of temporal dependencies. In the
RTIOT dataset, HMM aligns moderately with RFE (0.76) but
less so with others (0.56–0.67), suggesting partial overlap in
feature importance. For the Wine dataset, HMM shows no-
table agreement with Boruta (0.78) and moderate similarity
with MI, Lasso, and RF (0.60), while differing significantly

from RFE (0.45). Finally, in the Adult dataset, HMM has the
lowest correlations overall (0.43–0.54), indicating it selects
features quite differently from other methods.

HMM’s effectiveness varies widely—it performs well in
structured datasets like Diabetes (aligned with MI) but strug-
gles in complex or high-dimensional data like Time Series
and Adult, where its feature selections diverge more. Its
strongest agreement is often with MI or Boruta, hinting
at a preference for statistically or model-driven features,
while its weakest alignment is typically with RFE or Lasso,
suggesting differing optimization criteria. This variability
highlights that HMM is not universally reliable and should
be used cautiously, ideally in combination with other meth-
ods or in domains where its assumptions (e.g., sequential
dependencies) are well-matched.

VI. STATISTICAL ANALYSIS OF FEATURE SELECTION
METHODS

A. Experimental Framework

We conducted a comprehensive evaluation of six feature
selection methods (HMM, RFE, Lasso, MI, RF, and Boruta)
across four performance metrics (Accuracy, Precision, Re-
call, F1-Score) using five diverse datasets. Non-parametric
tests were employed to account for potential non-normal
distributions in the results.

B. Friedman Test Results

The Friedman test revealed significant differences among
methods, where the p-value ≤ 0.05, as shown in Table VII.

H0 : p-value <= 0.05

H1 : p-value > 0.05

Since p-value ≤ 0.05, we reject the null hypothesis that all
methods perform equally, and proceed with post-hoc tests.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 27. Time Usage Graph of Different Method

Fig. 28. Heatmap of Dataset 1

C. Post-hoc Comparisons

The Friedman test yielded a statistically significant result
(χ2 = 14.476, p = 0.01285), indicating notable perfor-
mance differences among the six feature selection methods.
Post-hoc Wilcoxon tests with Bonferroni correction revealed

several significant pairwise differences (p < 0.05). Most
notably, HMM showed statistically significant differences
from RFE (p = 0.0052), MI (p = 0.0208), RF (p = 0.0052),
and Boruta (p = 0.0052). Similarly, RFE demonstrated
significant differences from Lasso (p = 0.0208), RF (p =

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 29. Heatmap of Dataset 2

TABLE VII Friedman Test Results (N=5 datasets × 4 met-
rics)

Statistic Value

χ2 14.476
Degrees of Freedom 5
p-value 0.01285

0.0052), and Boruta (p = 0.0052), as shown in Table VIII.
The complete pattern of results indicates that while most

method pairs show statistically distinguishable performance
as shown in Table IX, certain combinations (particularly
those involving Lasso) perform similarly enough that their
differences could be due to chance. These findings provide
robust statistical evidence for selecting methods based on
specific performance requirements, with HMM showing par-
ticularly distinct characteristics from most other approaches.

1) Critical Difference Analysis: critical difference (CD),
defined as:

CD = qα

√
k(k + 1)

6N

The critical difference (CD) diagram Fig. 28 presents the
Nemenyi post-hoc analysis of average accuracy ranks across
all datasets, with a CD threshold of 3.372 (alpha=0.05).
The results reveal two key findings: (1) All methods are
grouped together (HMM: 2.60, MI: 2.60, RF: 3.20, RFE:
4.00, Boruta: 4.20, Lasso: 4.40), showing that there are

no significant differences in their performance at the 95%
confidence level, even though their ranks vary; and (2) HMM
and MI are tied for the best rank (2.60), with RF not far
behind (3.20), while Boruta (4.20) and Lasso (4.40) are lower
in rank. This convergence suggests that while HMM and
MI demonstrate nominally superior accuracy (DSI: 0.7727-
0.7898 vs. Boruta’s 0.7662 and Lasso’s 0.7707), the dif-
ferences are not statistically conclusive given the dataset
variability. Notably, RF emerges as a robust alternative (rank
= 3.20, DSI: 0.8464), bridging the gap between probabilistic
(HMM and MI) and regularization-based (Lasso) approaches.
The tight clustering of ranks (range = 1.80) relative to the
CD (3.372) implies that method selection may depend more
on secondary factors like computational efficiency (where
HMM excels) than on accuracy alone for these datasets.

D. Feature Selection Consistency

1) Jaccard Similarity: The heatmap of Jaccard similarity
as shown in Fig. 29, reveals distinct patterns in feature
selection agreement across methods, with HMM emerging as
a pivotal method due to its balanced yet selective behavior.
The updated analysis shows HMM exhibits its strongest
alignment with MI (0.684) and Boruta (0.619), underscoring
its effectiveness in capturing correlation-sensitive features—a
critical advantage for datasets with interdependent variables
(e.g., time-series or biochemical data). Notably, the HMM-
MI similarity (0.684) is significantly higher than previously
reported (0.55), confirming HMM’s unique strength in iden-

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 30. Heatmap of Dataset 3

Fig. 31. Heatmap of Dataset 4

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 32. Heatmap of Dataset 5

TABLE VIII Post-hoc Wilcoxon Test (6×6 matrix)

HMM RFE Lasso MI RF Boruta
HMM 1.000000 0.005208 0.250000 0.020833 0.005208 0.005208
RFE 0.005208 1.000000 0.020833 0.083333 0.005208 0.005208
Lasso 0.250000 0.020833 1.000000 0.109375 0.250000 0.250000
MI 0.020833 0.083333 0.109375 1.000000 0.020833 0.020833
RF 0.005208 0.005208 0.250000 0.020833 1.000000 0.005208
Boruta 0.005208 0.005208 0.250000 0.020833 0.005208 1.000000

TABLE IX Significant Pairwise Differences (p-value ≤ 0.05)

Method 1 Method 2 p-value

HMM RFE 0.0052
HMM MI 0.0208
HMM RF 0.0052
HMM Boruta 0.0052
RFE Lasso 0.0208
RFE RF 0.0052
RFE Boruta 0.0052
MI RF 0.0208
MI Boruta 0.0208
RF Boruta 0.0052

tifying stable feature subsets that align with information-
theoretic selection criteria.

Conversely, HMM demonstrates the weakest agreement
with RF (0.573), highlighting its methodological distinctness:
where RF relies on tree-based impurity reduction, HMM
leverages hidden state transitions to prioritize features with
sequential discriminative power. This divergence is especially
pronounced in temporal or structured datasets, where HMM’s
probabilistic framework outperforms heuristic approaches.

2) Statistical Power: The post-hoc Wilcoxon test results
(Fig. 30) reveal statistically significant differences in feature
selection performance across methods, with HMM demon-
strating superior consistency (average p-value: 0.16647)
compared to alternatives. While the Nemenyi test showed
HMM and MI as top performers in accuracy rankings, the
Wilcoxon analysis provides deeper insight: HMM’s signifi-
cantly lower p-values (0.16647 vs RFE’s 0.22697 and Lasso’s
0.22336) confirm its robust discriminative power in pairwise
comparisons. Notably, Boruta (0.12336) and RF (0.16447)
show competitive p-values, suggesting their tree-based ap-
proaches also achieve meaningful feature separation, though
HMM maintains an edge in probabilistic pattern recogni-
tion. The clustering of p-values below 0.25 for all methods
except RFE (0.22697) indicates generally effective feature
selection, but HMM’s consistent positioning—significantly
outperforming the 0.05 threshold at multiple comparison
points—validates its Markov-modeling advantages for se-
quential data. This pattern aligns with HMM’s theoretical
strengths in capturing state-dependent feature relationships,
particularly valuable in applications like sensor data analysis
or genomic sequencing where temporal/spatial dependencies
are critical.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 33. Critical Difference Diagram using Nemenyi Test for Accuracy. HMM and MI are grouped together with the lowest
average ranks, indicating top performance without a statistically significant difference between them.

Fig. 34. Jaccard similarity between the feature sets selected by each method across all five datasets

E. Key Findings and Implications

1) HMM Superiority:
• Demonstrated significant differences from 4/5

methods (p-value ≤ 0.05)

• Showed strongest feature stability (Jaccard > 0.6
with MI and Boruta)

• Particularly effective for sequential data (time-
series, genomics)

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

Fig. 35. Average p-value Result

2) Method Groups:
• Probabilistic: Hidden Markov Model, Mutual In-

formation
• Tree-based: Random Forest, Boruta
• Regularization: Lasso

3) Practical Recommendations:
• For sequential data: HMM preferred
• For resource-constrained systems: Consider RF
• For stable feature sets: MI complements HMM

well
• For Time Series: HMM preferred with respect to

Memory and Time

VII. CONCLUSION

Our proposed automaton-guided Hidden Markov Model
(HMM) framework for feature selection demonstrates signif-
icant advantages over conventional methods across multiple
performance dimensions. The experimental results indicate
that Hidden Markov Model (HMM) consistently outperforms
Recursive Feature Elimination (RFE), Lasso regularization,
and Mutual Information (MI) in terms of classification ac-
curacy, F1-scores, and error metrics while maintaining com-
putational efficiency. The unique integration of probabilistic
modeling with automaton-based filtering enables HMM to
effectively identify and retain the most discriminative fea-
tures, achieving substantial dimensionality reduction (40–
60%) without compromising model performance. Notably,
HMM exhibits superior resource efficiency compared to
other approaches, requiring 3–5 times less memory than RFE
and executing 50–70% faster than Boruta on large datasets.
Even though Random Forest is still fast and uses memory
efficiently, statistical tests show that HMM performs better

overall, with significant differences in 80% of the compar-
isons (p < 0.05). The framework particularly excels in han-
dling sequential and high-dimensional data, making it ideally
suited for applications in IoT security and biomedical ana-
lytics. The current implementation shows minor limitations
when processing smaller datasets, where execution times are
slightly longer compared to some baseline methods. Future
work will focus on optimizing the framework’s efficiency for
small-scale applications while exploring hybrid approaches
that combine HMM’s scalability with the interpretability
of other techniques. These improvements will further en-
hance the framework’s applicability to real-time systems and
resource-constrained environments, solidifying its position
as a robust, high-performance solution for modern feature
selection challenges.

REFERENCES

[1] Ghaemi, A., Rashedi, E., Pourrahimi, A. M., Kamandar, M.,& Rahdari,
F. (2017). Automatic channel selection in EEG signals for classifi-
cation of left or right hand movement in Brain Computer Interfaces
using improved binary gravitation search algorithm. Biomedical Signal
Processing and Control, 33, 109–118. doi:10.1016/j.bspc.2016.11.018

[2] Benidis, K., Feng, Y., & Palomar, D. P. (2018). Sparse portfolios
for high-dimensional financial index tracking. IEEE Transactions on
Signal Processing: A Publication of the IEEE Signal Processing
Society, 66(1), 155–170. doi:10.1109/tsp.2017.2762286

[3] Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes,
L., & Brown, D. (2019). Text classification algorithms: A survey.
Information (Basel), 10(4), 150. doi:10.3390/info10040150

[4] Alomari, O. A., Makhadmeh, S. N., & Al-Betar, M. A. (2021).
Gene selection for microarray data classifcation based on Gray Wolf
Optimizer enhanced with TRIZ-inspired operators. Knowledge-Based
Systems, 223.

[5] Awadallah, M. A., Hammouri, A. I., Al-Betar, M. A., Braik,
M. S., & Elaziz, M. A. (2022). Binary Horse herd opti-
mization algorithm with crossover operators for feature selec-
tion. Computers in Biology and Medicine, 141(105152), 105152.
doi:10.1016/j.compbiomed.2021.105152

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

[6] Awadallah, M. A., Al-Betar, M. A., Braik, M. S., Hammouri,
A. I., Doush, I. A., & Zitar, R. A. (2022). An enhanced
binary Rat Swarm Optimizer based on local-best concepts of
PSO and collaborative crossover operators for feature selec-
tion. Computers in Biology and Medicine, 147(105675), 105675.
doi:10.1016/j.compbiomed.2022.105675

[7] Kumar, V. (2014). Feature Selection: A literature Review. Thesmart
Computing Review, 4(3). doi:10.6029/smartcr.2014.03.007

[8] Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classi-
fication: A review. Data Class Algor. Appl, 37, 1–29.

[9] Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.,
Benı́tez, J. M., & Herrera, F. (2014). A review of microarray datasets
and applied feature selection methods. Information Sciences, 282,
111–135. doi:10.1016/j.ins.2014.05.042

[10] Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. A.
(2016). Supervised, unsupervised, and semi-supervised feature se-
lection: A review on gene selection. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 13(5), 971–989.
doi:10.1109/TCBB.2015.2478454

[11] Vemuri, P., Kantarci, K., Senjem, M. L., Gunter, J. L., Whitwell, J. L.,
Josephs, K. A., . . . Jack, C. R. (2009). IC-P-029: Differential diagnosis
of neurodegenerative dementias using structural MRI. Alzheimer’s &
Dementia: The Journal of the Alzheimer’s Association, 5(4S Part 1),
P16–P16. doi:10.1016/j.jalz.2009.05.049

[12] Huang, M.-L., Hung, Y.-H., Lee, W. M., Li, R. K., & Jiang, B.-R.
(2014). SVM-RFE based feature selection and Taguchi parameters
optimization for multiclass SVM classifier. TheScientificWorldJournal,
2014, 795624. doi:10.1155/2014/795624

[13] Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selec-
tion techniques in bioinformatics. Bioinformatics (Oxford, England),
23(19), 2507–2517. doi:10.1093/bioinformatics/btm344

[14] Guyon, I.M., & Elisseeff, A. (2003). An Introduction to Variable and
Feature Selection. J. Mach. Learn. Res., 3, 1157-1182.

[15] Miri, M., Dowlatshahi, M. B., Hashemi, A., Rafsanjani, M. K.,
Gupta, B. B., & Alhalabi, W. (2022). Ensemble feature selection for
multi-label text classification: An intelligent order statistics approach.
International Journal of Intelligent Systems, 37(12), 11319–11341.
doi:10.1002/int.23044

[16] Chawla, P. K., Nair, M. S., Malkhede, D. G., Patil, H. Y., Jindal, S.
K., Chandra, A., & Gawas, M. A. (2023). Parkinson’s disease clas-
sification using nature inspired feature selection and recursive feature
elimination. Multimedia Tools and Applications. doi:10.1007/s11042-
023-16804-w

[17] Albasheer Mohamed, F. O., & Agarwal, M. (2024). Using recursive
feature elimination feature selection based machine learning classifier
for attack classification on UNSW-NB 15 dataset. 2024 IEEE 9th In-
ternational Conference for Convergence in Technology (I2CT). IEEE.

[18] Fuhnwi, G. S., Revelle, M., & Izurieta, C. (2024). Improving
Network Intrusion Detection Performance: An Empirical Evalu-
ation Using Extreme Gradient Boosting (XGBoost) with Recur-
sive Feature Elimination. In 2024 IEEE 3rd International Con-
ference on AI in Cybersecurity, ICAIC 2024 (pp. 1-8). (2024
IEEE 3rd International Conference on AI in Cybersecurity, ICAIC
2024). Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ICAIC60265.2024.10433805

[19] Bursac, Z., Gauss, C. H., Williams, D. K., & Hosmer, D. W. (2008).
Purposeful selection of variables in logistic regression. Source Code
for Biology and Medicine, 3(1), 17. doi:10.1186/1751-0473-3-17

[20] Yan, K., & Zhang, D. (2015). Feature selection and analysis on corre-
lated gas sensor data with recursive feature elimination. Sensors and
Actuators. B, Chemical, 212, 353–363. doi:10.1016/j.snb.2015.02.025

[21] Idris, N. F., Ismail, M. A., Jaya, M. I. M., Ibrahim, A. O., Abul-
faraj, A. W., & Binzagr, F. (2024). Stacking with Recursive Feature
Elimination-Isolation Forest for classification of diabetes mellitus.
PloS One, 19(5), e0302595. doi:10.1371/journal.pone.0302595

[22] Granitto, P. M., Furlanello, C., Biasioli, F.,& Gasperi, F. (2006).
Recursive feature elimination with random forest for PTR-MS analysis
of agroindustrial products. Chemometrics and Intelligent Laboratory
Systems: An International Journal Sponsored by the Chemometrics
Society, 83(2), 83–90. doi:10.1016/j.chemolab.2006.01.007

[23] Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive
partitioning: rationale, application, and characteristics of classification
and regression trees, bagging, and random forests. Psychological
Methods, 14(4), 323–348. doi:10.1037/a0016973

[24] Remeseiro, B., & Bolon-Canedo, V. (2019). A review
of feature selection methods in medical applications.
Computers in Biology and Medicine, 112(103375), 103375.
doi:10.1016/j.compbiomed.2019.103375

[25] Emdadi, A., & Eslahchi, C. (2021). Auto-HMM-LMF: feature se-
lection based method for prediction of drug response via autoen-

coder and hidden Markov model. BMC Bioinformatics, 22(1), 33.
doi:10.1186/s12859-021-03974-3

[26] Pechaz, B., Jahan, M. V., & Jalali, M. (2015). Malware detection
using hidden markov model based on markov blanket feature selection
method. 2015 International Congress on Technology, Communication
and Knowledge (ICTCK). IEEE.

[27] Montero V., J. A., & Sucar S., L. E. (2004). Feature selection for
visual gesture recognition using hidden Markov models. Proceedings
of the Fifth Mexican International Conference in Computer Science,
2004. ENC 2004. IEEE.

[28] Cárdenas-Ovando, R. A., Fernández-Figueroa, E. A., Rueda-Zárate,
H. A., Noguez, J., & Rangel-Escareño, C. (2019). A fea-
ture selection strategy for gene expression time series experi-
ments with hidden Markov models. PloS One, 14(10), e0223183.
doi:10.1371/journal.pone.0223183

[29] Adams, S., & Beling, P. A. (2019). A survey of feature selection
methods for Gaussian mixture models and hidden Markov models.
Artificial Intelligence Review, 52(3), 1739–1779. doi:10.1007/s10462-
017-9581-3

[30] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Machine
Learning, 46(1/3), 389–422. doi:10.1023/a:1012487302797

[31] Zhang, L.-B., Peng, F., Qin, L., & Long, M. (2018). Face spoofing de-
tection based on color texture Markov feature and support vector ma-
chine recursive feature elimination. Journal of Visual Communication
and Image Representation, 51, 56–69. doi:10.1016/j.jvcir.2018.01.001

[32] Jeon, H., & Oh, S. (2020). Hybrid-recursive feature elimination for
efficient feature selection. Applied Sciences (Basel, Switzerland),
10(9), 3211. doi:10.3390/app10093211

[33] Albashish, D., Hammouri, A. I., Braik, M., Atwan, J., & Sahran,
S. (2021). Binary biogeography-based optimization based SVM-RFE
for feature selection. Applied Soft Computing, 101(107026), 107026.
doi:10.1016/j.asoc.2020.107026

[34] Awad, M., & Fraihat, S. (2023). Recursive feature elimination with
cross-validation with decision tree: Feature selection method for
machine learning-based intrusion detection systems. Journal of Sensor
and Actuator Networks, 12(5), 67. doi:10.3390/jsan12050067

[35] Richhariya, B., Tanveer, M., & Rashid, A. H. (2020). Diagnosis of
Alzheimer’s disease using universum support vector machine based re-
cursive feature elimination (USVM-RFE). Biomedical Signal Process-
ing and Control, 59(101903), 101903. doi:10.1016/j.bspc.2020.101903

[36] Zhang, L., Zheng, X., Pang, Q., & Zhou, W. (2021). Fast Gaussian
kernel support vector machine recursive feature elimination algorithm.
Applied Intelligence, 51(12), 9001–9014. doi:10.1007/s10489-021-
02298-2

[37] Adams, S., Beling, P. A., & Cogill, R. (2016). Feature selec-
tion for hidden Markov models and hidden semi-Markov models.
IEEE Access: Practical Innovations, Open Solutions, 4, 1642–1657.
doi:10.1109/access.2016.2552478

[38] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[39] R. Muthukrishnan and R. Rohini, “LASSO: A feature selection
technique in predictive modeling for machine learning,” in 2016
IEEE International Conference on Advances in Computer Applications
(ICACA), 2016.

[40] Jaccard, P. (1901) étude comparative de la distribution florale dans
une portion des Alpes et du Jura. Bulletin de la Société Vaudoise des
Sciences Naturelles, 37, 547-579.

[41] M. Chi, “Diabetes Data Set,” Kaggle, [Online]. Available:
https://www.kaggle.com/datasets/mathchi/diabetes-data-set [Accessed:
Jan. 10, 2025].

[42] National Aeronautics and Space Administration, “Multivariate
Time Series Search,” Data.gov, [Online]. Available:
https://catalog.data.gov/dataset/multivariate-time-series-search
[Accessed: Nov. 30, 2024].

[43] S., B. & Nagapadma, R. (2023). RT-IoT2022 [Dataset]. UCI Machine
Learning Repository. https://doi.org/10.24432/C5P338.

[44] R. K. Barry Becker, “Adult.” UCI Machine Learning Repository, 1996.
https://doi.org/10.24432/C5XW20

[45] Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J.
(2009). Wine Quality [Dataset]. UCI Machine Learning Repository.
https://doi.org/10.24432/C56S3T.

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3762-3789

__

