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Abstract—Butterfly optimization algorithm (BOA) is a meta-
heuristic algorithm that has been widely applied in recent
years. To alleviate the limitations of the traditional BOA, this
paper proposes a novel adaptive chaos BOA, namely ACBOA.
Firstly, with regard to the fragrance and switch probability
in BOA, adaptive adjustments are employed to create more
refined fragrance perception and search behaviors. Secondly,
based on the randomness and ergodicity of Tent chaos mapping,
a wider range of areas is provided for each butterfly to explore
and exploit. Then, the proposed ACBOA and 9 comparison
algorithms are subjected to a detailed numerical computation
analysis using CEC2022 test suite. Finally, ACBOA is applied
to 3 power engineering problems: economic emission dispatch,
synchronous optimal pulse-width modulation (SOPWM) for
3-level inverters, and parameter extraction of photovoltaic
model. Experiments demonstrate that the proposed algorithm
outperforms the comparison algorithms and showcases strong
potential for numerical computation and applications in power
engineering.

Index Terms—Butterfly optimization algorithm, Adaptive,
Chaos, Numerical computation, Power engineering

I. INTRODUCTION

ETA-HEURISTIC search algorithms are a category

of general optimization methods designed based on
natural phenomena, biological behaviors, or human expe-
riences [1]. These algorithms do not rely on the specific
mathematical properties of the problems being dealt with.
Instead, they possess remarkable characteristics, such as
strong global search capabilities, excellent robustness, ease
of implementation, and relatively low computational costs.
Common types of meta-heuristic search algorithms include
genetic algorithm (GA) [2], simulated annealing (SA) [3],
and so on. Each of these algorithms simulates different
natural or biological behaviors. For example, GA imitates the
evolutionary processes of inheritance, crossover, and muta-
tion in biological organisms, while the SA draws inspiration
from the physical process of metal annealing. These algo-
rithms have been widely applied in a broad range of fields,
including engineering design [4], production scheduling [5],
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bioinformatics [6], and image processing [7]. The future
development trends involve integrating with other methods
or knowledge, making improvements to tackle complex
problems, and achieving self-adaptation and intelligence by
leveraging new technologies.

Butterfly optimization algorithm (BOA) is a typical
population-based meta-heuristic algorithm proposed in 2019,
which is designed based on the foraging behavior of butter-
flies attracted by the fragrance of flowers [8]. In BOA, the
solution space corresponds to the search space of butterflies,
and the quality of the solution corresponds to the concentra-
tion of the fragrance. The key elements include the fragrance
concentration, perception distance, and switch probability,
which are used to balance the global and local searches.
This algorithm has been applied in various fields such
as engineering optimization, image processing, and energy
management. Although it has a simple principle, good global
search ability, and strong adaptability, when dealing with
large-scale, high-dimensional, and complex problems, it may
encounter issues such as slow convergence and low precision
[9]. Moreover, its performance is sensitive to parameter
settings. In response to the deficiencies of BOA, researchers
have carried out extensive studies, mainly focusing on [10]:
(a) Heterogeneous integration; (b) Parameter adjustment; (c)
Noise interference; (d) Movement behavior. The specific
summary is as follows.

(a) Heterogeneous integration. BOA demonstrates excel-
lent performance in addressing specific problems. However,
it struggles to provide universal solutions for the complex
and diverse real-world issues, which significantly restricts
its application scope. In contrast, heterogeneous integra-
tion, which combines multiple approaches, offers greater
flexibility in handling tasks across various fields, such as
engineering optimization and data mining. Moreover, het-
erogeneous integration enhances the robustness of BOA.
Through the collaborative operation of multiple algorithms,
it reduces the risk of BOA failure due to its inherent limita-
tions, thereby expanding its applicable range. For instance,
Sushmita Sharma et al. [11] proposed an improvement to
the search ability of BOA by leveraging the mutualistic
phase of the symbiotic organisms search (SOS) algorithm.
Additionally, Dana Marsetiya Utama et al. [12] utilized the
classic tabu search (TS) algorithm, along with local flipping
and swapping strategies, to enhance the performance of
BOA, making it more suitable for vehicle routing problems.

(b) Parameter adjustment. The parameters of an opti-
mization algorithm directly determine the performance of
the algorithm. In the case of BOA, adjusting the fragrance
parameter can influence the tendency of butterflies towards
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solutions, facilitating the screening of high-quality solutions.
By regulating the switch probability, it is possible to control
the switching frequency between global and local search
modes. This helps to avoid premature convergence to local
optima and improves the accuracy and efficiency of solution
seeking. To address the limitation of BOA’s relatively poor
exploration ability, Fan YuQi et al. [13] modified the update
strategy and fragrance coefficient. Lee Sen Tan et al. [14] first
corrected the switching probability and sensory modality of
BOA and then applied it to the training of wavelet neural
networks. Sushmita Sharma et al. [15] employed Lagrangian
interpolation, adaptive parameters, and Lévy flight to en-
hance the search ability of BOA.

(c) Noise interference. In the improvement of algorithms,
the method of noise interference has been attracting increas-
ing attention. It can enhance the diversity of the search.
By introducing randomness into the position update rule of
butterflies in BOA, it encourages the butterflies to explore
more areas of the solution space, thus preventing premature
convergence. Moreover, it helps the algorithm escape from
local optima. The perturbation caused by noise can break the
attraction of local optima. Aiming at the poor adaptability of
the sensory modality and the blindness of the search in BOA,
Kun Hu et al. [16] adopted the Weibull distribution and the
normal distribution for improvement.

(d) Movement behavior. Movement behavior plays a cru-
cial and multifaceted role in intelligent optimization algo-
rithms, mainly manifested in guiding the search direction,
balancing the search capabilities, and maintaining population
diversity. In BOA, movement behavior is determined by
factors such as the fragrance concentration of butterflies,
the perception distance, and the switch probability. These
factors dictate the way individual butterflies move and the
search paths they take within the solution space. Through
continuous movement, butterflies in BOA can explore new
positions and seek better solutions. This movement behavior
also helps to balance global search, which aims to extensively
explore the solution space, and local search, which focuses
on meticulously mining high-quality solution regions. As a
result, it enables the effective optimization of problems. Yu
Li et al. [17] introduced an opposition-based learning mech-
anism, adaptive elite mutation, and a piecewise adjustment
factor to improve the search performance of BOA.

In order to further improve the performance of BOA and
expand its application scope, inspired by previous studies,
this paper proposes a novel adaptive chaos butterfly opti-
mization algorithm (ACBOA). The main contributions of this
paper are as follows.

(1) A novel variant of BOA is proposed to solve numer-
ical computation problems and those in the field of power
engineering.

(2) The proposed adaptive adjustment mechanism en-
hances the flexibility of the algorithm, enabling it to more
effectively adapt to various optimization scenarios by bal-
ancing exploration and exploitation.

(3) Chaos mapping is used and integrated into a new
movement pattern to traverse a wider solution space, thereby
improving the search ability of the algorithm.

(4) The proposed ACBOA is subjected to a detailed
numerical computation analysis on CEC2022 together with
9 comparison algorithms.

(5) ACBOA is applied to solve 3 application problems in
the field of power engineering.

The subsequent parts of this paper are arranged as follows.

Section II describes the traditional BOA.

Section III details the proposed ACBOA.

Section IV demonstrates the evaluation on numerical com-
putation.

Section V presents the application in power engineering.

Section VI discusses the conclusions and future work.

II. BUTTERFLY OPTIMIZATION ALGORITHM (BOA)

The process of BOA is as follows: After initializing the
population, calculate the fragrance concentration to evaluate
the solutions. Then, update the positions of the butterflies
according to the rules based on the perceived distance and
the switch probability to approach the optimal solution. This
process continues until the termination condition is met.

A. Initialize

The initial positions of N butterflies are randomly gener-
ated within the domain [lb, ub], as described by Eq.(1).

X, ; = (ub; —1bj) * rand + 1b;,i € [1,N],j € [1,D] (1)

Here, D represents the dimensionality, and X; ; stands for
the j-th dimension of the i-th butterfly. rand is a random
number between [0,1].

B. Fragrance

In BOA, fragrance serves as a guiding perceptual mech-
anism for the movement of butterflies, and its mathematical
expression is given as Eq.(2).

fi=I"xc )

Here, c represents the sensory modality, which has an
impact on both the convergence speed and accuracy. I de-
notes the stimulus intensity, and its value is determined by
the fitness value. The power exponent a can be calculated
based on the current iteration ¢ and the maximum iteration 7,
specifically, a = 0.2 % (¢/T) + 0.1.

C. Search

Each butterfly in BOA generates a random number rand
between [0,1] and compares it with the switch probability p
to determine whether to use global search or local search,
which is expressed as Eq.(3).

S R oo B e

3
XE+ (2« X} — X}) * f;

otherwise

Among them, X; is the global optimal solution up to the ¢-
th iteration, and X; and X} are the [-th and k-th butterflies
randomly selected from the population. r denotes a random
number between [0, 1].

III. THE PROPOSED ADAPTIVE CHAOS BUTTERFLY
OPTIMIZATION ALGORITHM (ACBOA)

In this section, we will introduce the adaptive adjustment
mechanism and incorporate the chaos mapping into the
position update process of BOA, so as to improve its search
performance.
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A. Adaptive adjustments

In BOA, fragrance is defined by the fitness function of
the optimization problem. Due to the significant differences
in the optimal solutions of different optimization prob-
lems, the fragrance value experiences substantial fluctuations.
Such fluctuations have a negative impact on the butterfly
position-updating process, thereby reducing the convergence
efficiency and stability of the algorithm. [10] presents a
new adaptive fragrance method, which has been proven to
be effective. Therefore, this paper introduces the adaptive
fragrance to replace Eq.(2), as shown in Eq.(4).

fi = [fitness; /(fitnessg +eps)]® * (1 — 0.6 % /t/T) (4)

fitness; and fitness, represent the fitness values of
the i-th butterfly and X, so far, respectively. eps is
a floating-point relative precision number with a value
of 2.2204*10~16,

In addition, emphasizing exploration in the early stage
and focusing on exploitation in the later stage is more
conducive to enhancing the search performance of the al-
gorithm. However, the switch probability p in BOA is fixed
at 0.8, which may lead to an imbalance between exploration
and exploitation [18]. Therefore, this paper employs a new
adaptive switch probability p,, as shown in Eq.(5).

Pa=08—05%t/T (5)

These two adaptive adjustments to BOA help it create
more refined fragrance perception and search behavior.

B. Chaos mapping

As can be seen from Eq.(3), the movement of each
butterfly depends on the random number rand. Although
this random number can provide equiprobable randomness,
the blindness of the random number combined with the
weakening effect of rand % rand may lead to low search
efficiency. Chaos is a common nonlinear phenomenon. By
using a mapping relationship, a chaotic sequence within the
range of [0, 1] can be generated, which features randomness
and ergodicity [19]. In this paper, the Tent chaos mapping
shown in Eq.(6) is introduced.

z; = rand/(N * D) + (2 x rand)modl (6)

The random numbers generated by the Tent chaos mapping
are introduced into the solution space of the optimization
problem, thereby generating noise disturbances to the move-
ment of individuals. Specifically, we designed a butterfly
position update behavior as shown in Eq.(7) to replace

Eq.(3).

Xt = Xi+zi* (Xg— XD+ fi
' Xi4zix (X[ = Xp)« fi

if rcmd.< Da 7
otherwise

The chaos mapping interferes with the movement of
individual butterflies and generates a broader area for ex-
ploration and exploitation, which is of great significance for
discovering more promising candidate solutions.

C. Structure of the proposed ACBOA

The pseudo-code and flowchart of the proposed ACBOA
can vividly illustrate its structure, as depicted in Algorithm
1 and Fig. 1, separately.

Algorithm 1: The pseudo-code of ACBOA

Input: Initialize parameters.
Output: Optimal solution X,.
1 Initialize population by Eq.(1);
2 Evaluate fitnesses of X, get X, and F'E's;
3t=0,T7=[FEs,/NJ;
4 while t <T && FEs < FEs,, do

5 t=t+1;
6 Compute power exponent a;
7 Get adaptive switch probabilit p, by Eq.(5);
8 for i =1t N do
9 Calculate adaptive fragrance f; by Eq.(4);
10 Obtain chaos mapping z; by Eq.(6);
11 if rand < p, then
12 | X7 = X!z (XL — XD) + f
13 else
14 | X = X4z (X — XD * fis
15 end
16 Check boundaries and evaluate X f“;
17 Update X}, X,, and FEs;
18 end
19 end
[ Set parameters and initialize position ]
L 2
[ Evaluate fitnesses, get X, and FEs ]

[ Updatea,pa.fi, and zi by Eqs.(5).@and (6) |

(XM= XT 42 (X! — XD) = fi]

(T =Xl 4=« (X[ = XD) + £
J

v

\-[ Check boundaries, evaluate and update X;, X, and FEs ]

]‘)

[ Output optimal solution X,

End
Fig. 1: Structure of ACBOA.

IV. EVALUATION ON NUMERICAL COMPUTATION

In this section, we conduct a comprehensive numerical
computation analysis of the proposed algorithm based on the
well-known CEC2022 test suite.

A. Description of benchmark functions

CEC2022, namely the Congress on Evolutionary Com-
putation 2022 [20], is a highly authoritative benchmark
testing platform in the field of evolutionary computation.

Volume 33, Issue 9, September 2025, Pages 3790-3800



Engineering Letters

This test suite has designed 12 benchmark test functions,
covering various types such as unimodal, multimodal, hybrid,
and composite functions. By flexibly adjusting dimensional
parameters and adding noise interference, it constructs a
diverse range of complex optimization environments. These
test functions can systematically evaluate the global search
ability of optimization algorithms, the efficiency of escaping
from local optima, the convergence speed, and the stability
performance. As a universal standard evaluation tool in the
industry, CEC2022 provides a unified quantitative evaluation
framework for researchers and has become an important
reference system for verifying the performance superiority
of new optimization algorithms.

B. Comparison algorithm and parameter setting

To fully verify the performance of ACBOA, we have
selected 9 representative comparative algorithms, including
BOA variants, classic algorithms, newly proposed algo-
rithms, and highly cited algorithms. The detailed information
and parameter settings of these algorithms are shown in Table
L.

TABLE I
COMPARISON ALGORITHMS AND PARAMETERS SETTING.

Algorithm  Year Ref. Parameters setting

BOA 2019 [8] p=0.8, ¢=0.01

BKA 2024 [21] p=0.9, r=rand

CBOA 2022 [22] I=(1+rand)

GWO 2014 [23] A=[0,2], C=2*rand, a=[0,2]

MABOA 2021 [16] p=0.8, c=c¢+0.025%c,/T', N=220, \=2
mMBOA 2020 [24] p=0.8, ¢=0.01

PPSO 2019 [25] Vmaz=0.5%dz, de=ub-lb

SABOA 2020 [13] p=0.8, ¢=0.01

WOA 2016 [26] a=[0,2], b=1 A=[0,2], I=[-1,1], C'=2*rand
ACBOA Present Present ¢=0.01

All experiments were executed in the MATLAB soft-
ware, operating on a Windows 11 based personal computer
equipped with 64.0G of memory and a 3.40G Hz CPU.
A population size of 30 individuals was specified for each
algorithm run, and the maximum number of evaluations
(FEs,,) for the 10-dimensional function was set to 2x10°.

C. Evaluation results analysis

ACBOA was comprehensively compared with 9 algo-
rithms, including BOA and its multiple variants, across multi-
ple indicators. The results after 30 runs are presented in Table
II, and the rank are based on the 'Mean’ values. As shown
in the table, ACBOA demonstrated the best performance on
the 12 functions in numerical computations, with an overall
ranking score of 18 and ultimately securing the first place.
ACBOA found solutions closest to the optimal ones for
functions f1, f2, f6, fs» fo, fi0, f11, and f12, outperforming
the comparative algorithms by a wide margin. For functions
f3, f1, f5, and fr, although ACBOA did not rank first, it still
ranked among the top. When ranked according to the average
values of all the tested functions, there is no doubt that
ACBOA is the most outstanding. Additionally, the running
efficiency of ACBOA is also highly competitive.

D. Convergence performance analysis

In this part, the average convergence performance and
result distribution of the algorithms were analyzed based on
the unimodal function f7, and the results are shown in Fig.
2. As can be seen from Fig. 2(a), ACBOA exhibits a much
faster convergence speed and higher optimization accuracy
for this function compared to the comparative algorithms. In
contrast to the relatively poor convergence curve of BOA,
this advantage of ACBOA is attributed to the adaptive chaos
method proposed in this paper. Additionally, the box plot
shown in Fig. 2(b) also indicates that ACBOA has excellent
stability in solving the function.

E. Running time analysis

The running time of an algorithm is a core indicator for
measuring its efficiency, which directly affects its practicality
and scalability in scenarios such as real-time computing and
big data processing, and is crucial to whether the algorithm
can meet the performance requirements and resource con-
straints of practical applications.

We have plotted a three-dimensional bar chart as shown in
Fig. 3 for the running times in Table II. It is not difficult to
conclude that the running time of ACBOA is slightly longer
than that of BOA. When compared with other algorithms,
the running efficiency of ACBOA is extremely excellent, as
it can provide outstanding search results in a relatively short
period of time.

FE Friedman rank test

The Friedman rank test is a non-parametric statistical
method used to test whether multiple related samples are
from the same distribution, and it is often employed to com-
pare the performance differences of multiple algorithms or
treatment methods across multiple datasets or experimental
conditions.

Based on this, Fig. 4 presents the results of the test
using this method. The obtained p-value is 4.481521603E-
14, which is much smaller than 0.05, indicating that there are
significant performance differences among these algorithms.
As can be seen from the figure, the bar of ACBOA is the
shortest, with an average rank of 1.5, which is much smaller
than that of the comparative algorithms. This confirms that
ACBOA has the best search ability in numerical computa-
tions.

G. Wilcoxon signed rank test

Although the Friedman rank test results has confirmed
the existence of significant performance differences between
ACBOA and the comparative algorithms, the specific differ-
ences between ACBOA and each individual algorithm remain
unknown. The Wilcoxon signed rank test, which is used to
examine whether two related samples are from populations
with the same median, is commonly employed to analyze the
differences in paired data and is particularly suitable for the
current testing scenario. Table III presents the results of the
Wilcoxon signed rank test.

In this table, the symbols 'R-" and 'R+’ denote the mean
rank sums for instances where ACBOA surpasses and un-
derperforms compared algorithms, respectively, across the 12
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TABLE II

NUMERICAL COMPUTATION RESULTS ON CEC2022 BENCHMARK FUNCTION.

Fun Index BOA BKA CBOA GWO MABOA mMBOA PPSO SABOA WOA ACBOA

f1i Mean 7642.958687 466.730037 1599.695747 1369.589284 9714.094524 4692.596160  496.978698 8924.423867 5159.362284  300.000000
Std 3058.520036 687.548553  682.324323 1431.552820 4007.594940 2901.043361  303.041918  2820.043967 2941.146078  0.000000
Best 2200.738723 300.081511 300.372431 331.489398 1795.958801 872.952015  304.565064 3528.859552 1753.063362  300.000000
Worst  14113.094894  3827.457330 2778.051014 4262.183842 17257.909503 9618.164715  1799.959087 17222.529953 11579.934150 300.000000
Time 7.01212845 7.46803910 7.60066186  7.30032167 14.33408493 8.36841643  7.01794777  7.07006126  7.40254996  7.02374137
Rank 8 2 5 4 10 6 3 9 7 1

f2 Mean 2562.872228 431.855721 413.349595  417.276045 915.059619 482.120980  419.034444 525246628  423.053283  400.199370
Std 1134.615114 72.105371 30.748853 18.780959 326.920336 71.023192 26.478439 191.927689 30.622208 0.724451
Best 728.947147 400.039084  400.000470 400.374161 507.303449 405.474332  400.289658  408.489785  400.053233  400.000104
Worst 4527.979181 781.394687  539.539805 472.042367 1951.464500 725.538122 474956731 1468.752212  492.890154  403.986681
Time 6.24428548 6.57971441  6.37408064 6.42537233 12.02950943 7.30346384  6.16884685  6.22332508  6.40015231  6.14474640
Rank 10 6 2 3 9 7 4 8 5 1

f3  Mean 658.071236 626.787327  602.710545  600.584623 640.991506 626.808783  635.260157  640.136697  624.880181  606.693430
Std 6.430912 11.067440 3.038749 0.901772 8.510138 11.102776 11.219831 9.753285 12.798787 3.629170
Best 646.972477 607.402973  600.000020  600.005125 622.950684 605.700045  613.295192  619.014700  607.344251  602.830789
Worst 670.521534 653.791429  611.889450 604.133929 656.664273 656.204004  657.545152  658.964890  650.532879  615.420695
Time 7.15022623 7.56086585 7.45156808  7.46072240 13.04802369 8.39918838  7.18781808  7.32594258  7.40598570  7.20424351
Rank 10 5 2 1 9 6 7 8 4 3

fa Mean 839.632904 824.082194 814.369664 815.117091 853.491184 828.348241 833.725911  844.615492  834.007940  817.740364
Std 10.437733 11.677279 4.343991 5.095814 10.187130 9.502724 14.974639 13.869421 11.266451 4.399957
Best 819.752937 808.053309 806.964713  807.319829 834.026727 814.454803  808.453672  821.992299  816.914397  806.998545
Worst 869.109865 855.788726  824.873902 827.258178 874.871499 850.295094  877.712681  878.160950  865.667673  825.571929
Time 6.39881764 6.71011322  6.60866575 6.57180693 12.24047339 7.52669333 631845427  6.43530144  6.50254299  6.37710494
Rank 8 4 1 2 10 5 6 9 7 3

fs Mean 1838.790287 1081.950682 1044.501653 912.525922 1195.821707 1112.171096 1405.467783 1425.124661 1301.596409 917.570555
Std 366.582637 113.767789  72.430878  31.664172 192.966048 138.069335  346.093530  258.500031 291.738066 12.891556
Best 1197.425071 920.700396  913.898789  900.037278 920.997417 914.498997  1023.265223 1042.380883  917.305471  900.832321
Worst 2559.472522 1346.003179 1209.030847 1030.920897 1831.586690 1463.144724  2845.106604 2187.261086 2164.735840 944.231485
Time 6.54812772 6.81063988  6.71291428  6.71550321 12.44994135 7.65371653  6.41594077  6.54574604  6.61116067  6.50307091
Rank 10 4 3 1 6 5 8 9 7 2

fe  Mean 48347697.696670 2432.457174 1984.264660 6169.474581 8524607.106688  23414.132026 3943.383099 4063.120884 3603.615738 1800.467345
Std  88628480.177338 1312.565239 273.710129 2339.316186 29419273.874233  32704.136914 2085.866089 2085.311430 1694.735717  0.117430
Best 128472.177590  1840.697834 1823.125620 1946.130502 7322.857191 2855.919096  1866.719533 1893.616312 1831.476036 1800.203368
Worst 434799058.846670 7619.737665 3037.020699 8217.328855 146627097.098612 156461.186352 8117.413376 10905.494511 7994.875018 1800.662666
Time 6.34147050 6.76269828  6.55981089  6.52344172 12.19765091 7.47689677  6.30561051  6.39194600  6.47760205  6.35123161
Rank 10 3 2 7 9 8 5 6 4 1

f7  Mean 2098.208890 2043.642918 2017.430440 2030.638504 2086.949322 2057.312841 2092.082118 2112.777157 2050.081221 2026.284899
Std 26.811171 16.706370  17.567410  11.373981 27.015191 20.805948 40.013463 32.469406 18.320468 2.545013
Best 2028.308618 2020.211892 2000.003054 2009.074616 2044.055048 2025.619304 2046.879021 2066.090248 2023.028786 2017.694360
Worst 2145.503706 2090.381686 2080.190506 2058.903851 2143.019955 2099.629274  2213.971715 2183.745807 2087.203260 2030.193086
Time 7.99881241 8.27522267 8.15638841 8.19973023 13.86902707 9.07964484  7.82481087  8.01841566  8.10388600  7.93285217
Rank 9 4 1 3 7 6 8 10 5 2

fs  Mean 2761.908530 2229.352655 2223.480004 2221.241300 2265.237611 2259.497004 2263.660462 2283.789134 2230.316878 2211.128752
Std 2081.831498 23.536164  22.433205 7.326659 59.287421 52.858402 59.867765 76.904775 5.554735 2.734134
Best 2230.432931 2207.942141 2201.028057 2202.247931 2228.102607 2225.666942  2225.748772 2223.376370 2218.128864 2207.269781
Worst  13726.124566  2348.325352 2339.022300 2230.047190 2467.127604 2365.048694 2467.919542 2537.840742 2243.647905 2216.596286
Time 8.48419806 8.83303304 8.73723569  8.73810474 14.44167972 9.64410814  8.31641967  8.49510319  8.58396446  8.51720628
Rank 10 4 3 2 8 6 7 9 5 1

fo Mean 2812.653242 2538.829039 2574.135778 2559.698152 2739.135748 2636.961387 2556.610421 2669.250559 2534.666202 2505.165333
Std 76.985979 36.588827  28.259008  27.915715 54.916551 47.074076 44.834272 61.035477 26.750998 33.895567
Best 2678.809415 2529.284391 2539.706602 2529.284472 2636.394700 2533.843685 2529.301827 2532.484968 2529.286499 2420.351096
Worst 3015.714440 2689.849327 2676.216332 2625.696269 2878.145526 2711.318319  2699.270651 2865.472105 2676.218025 2529.284383
Time 7.65366748 7.91283148 7.80943361 7.97428731 13.57057643 8.73076826  7.44219390  7.68411179  7.67891558  7.60249907
Rank 10 3 6 5 9 7 4 8 2 1

fio Mean 2612.505837 2636.889018 2572.484260 2578.131269 2722.304412 2608.578700 2722.328042 2666.441725 2590.370828 2504.468965
Std 233.990070 213.608302  55.364983  60.463991 311.422550 61.441566 365.857356  192.741817 192.214678  21.501177
Best 2500.906562 2500.285612 2500.713014 2500.255718 2508.425210 2500.617717  2500.989540 2502.108291  2500.309139 2500.343892
Worst 3467.637039 3419.532025 2631.812532 2736.124861 4191.644258 2671.077764 4045.191349 3545.891428 3501.029525 2618.308475
Time 7.21734430 7.61146773  7.39907056  7.45494010 13.10425268 8.33703202  7.12295689  7.25338151  7.27398934  7.20659100
Rank 6 7 2 3 9 5 10 8 4 1

f11 Mean 3219.336064 2716.638556 2661.266430 2769.020630 3436.036112 2895.487238 2808.524336 3157.052443 2816.879227 2600.000252
Std 268.879213 210.620788 124.134100  148.778293 481.397798 231.917878 156.478341  402.586065 126.731130 0.000671
Best 2815.567761 2602.537830 2600.000184 2600.154119 2793.809762 2639.315970 2603.604303 2731.725727 2600.330446 2600.000003
Worst 3986.715944 3200.331192 2930.790100 3189.569522 4469.048640 3384.151899 3200.939514 4214.853263 3184.756391 2600.003509
Time 7.75714041 8.13706611  8.02722690  7.99682937 13.74520344 8.89933509  7.69290599  7.89510532  7.93651862  7.77125535
Rank 9 3 2 4 10 7 5 8 6 1

fi12 Mean 2921.169671 2871.705488 2906.955745 2866.730110 2995.415549 2889.663992  2903.247167 2920.100555 2882.192152 2862.245087
Std 48.803470 18.895953  26.711204 8.012627 97.308023 37.315112 51.934154 52.152661 30.295713 4.082418
Best 2867.931577 2859.763583 2867.131087 2858.758112 2881.165063 2865.532848 2863.597818 2867.834839 2862.567377 2858.708351
Worst 3042.998895 2948.285584 2968.381589 2893.600440 3345.645198 3039.746602  3065.166570 3050.310609  2985.399598 2881.290968
Time 8.18591974 8.45279001 8.32136573  8.33440867 14.10965507 9.27562869  7.98436081  8.21657893  8.22123885  8.09179019
Rank 9 3 7 2 10 5 6 8 4 1

Total rank 109 48 36 37 106 73 73 100 60 18

Final rank 10 4 2 3 9 6.5 6.5 8 5 1
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TABLE III
WILCOXON TEST (AVERAGE) RESULTS.

ACBOA vs. p-value R+ R- +/=/-
BOA 0.00000178598  0.25000000000  464.75000000000  12/0/0
BKA 0.00226653414  21.00000000000  444.00000000000  12/0/0
CBOA  0.00139832031  109.33333333333  355.66666666667  9/0/3
GWO 001392925062 117.58333333333  347.41666666667  8/2/2

MABOA  0.00000173440  0.00000000000  465.00000000000  12/0/0
mMBOA  0.00000388993  2.91666666667  462.08333333333  12/0/0
PPSO  0.00000203555  1.08333333333  463.91666666667 12/0/0
SABOA  0.00000173440  0.00000000000  465.00000000000  12/0/0
WOA 000001012967 625000000000  458.75000000000  12/0/0
benchmark functions. The notations ’+’, ’-” and =" signify

that ACBOA demonstrates superior performance, inferior
performance, and no significant difference relative to the
comparative algorithms when solving these 12 functions.
From the table, ACBOA exhibits unparalleled advantages,
and even achieves the result of *12/0/0° when compared
with multiple algorithms, such as BOA, BKA, MABOA,
mMBOA, PPSO, SABOA, and WOA.

V. APPLICATION IN POWER ENGINEERING

In this section, the proposed ACBOA is applied to solve
3 kinds of classical applications in power engineering.

A. Economic emission dispatch

Economic emission dispatch is a crucial power system
operation strategy aiming to simultaneously minimize the
total generation cost and pollutant emissions of power plants
by optimally allocating generation power among units while
satisfying various operational constraints, thus achieving a
balance between economic benefits and environmental pro-
tection in power generation [29]. Taking the classic IEEE 14-
bus system as an example, we demonstrate the capabilities of
ACBOA and the comparative algorithms in dispatching this
system. The total demand of this system is 259MW, and the
schematic diagram and dataset can be obtained from [30, 31].

Volume 33, Issue 9, September 2025, Pages 3790-3800



Engineering Letters

TABLE 1V
ECONOMIC EMISSION DISPATCH RESULTS OF IEEE 14-BUS SYSTEM.

Generator BOA BKA CBOA GWO MABOA mMBOA PPSO SABOA WOA ACBOA
PGl (MW) 164.32539583 173.56921422 123.54432791 154.82335146 131.25881091 131.71560883 174.69918984 173.95602505 203.94749288 173.62587860
PG2 (MW) 38.77336581  46.30829989  49.02195813  48.82007148 50.11297343 51.77904463 36.71541704 23.10226156 20.00000000 46.21477671
PG3 (MW) 2225429728  19.12238589  26.79763391  16.74869965 32.07792544 23.10235560 19.15320607 23.14500919 15.05240712 19.15924469
PG4 (MW) 23.64680670  10.00000000 40.75633249  28.50044930 17.70191463 21.78062271 18.43208705 10.21354423  10.00000000  10.00000000
PG5 (MW) 10.00000000  10.00000000  18.87999975 10.10727503  27.85068960 30.62263431 10.00000000 28.58305997  10.00000000  10.00000000

Fuel cost ($/h)

Emission (ton/h) 0.16968754  0.18163645  0.14751034  0.16451556

691.29712724 686.48998842 715.71179604 693.23755272 718.24975979 712.53682887 689.00878513 708.02233726 700.92200234 686.48704641
0.14807151

0.14825457  0.17979395  0.18020527  0.21846232  0.18166861

EED ($/h) 705.79282798 701.63839820 729.53589940 707.48897366 752.73883500 726.56203940 704.00353112 723.05138740 719.14167505 701.63813866
Mean 761.94978973 706.78422931 767.98162290 776.74656339 936.35077699 888.63692810 846.87809785 840.66811853 974.33122215 701.63813866
Std 28.29858961  6.11376875  23.98472000 82.98082431 115.93823962 127.95420160 120.59442545 93.76667766 137.70010091 0.00000000
Worst 814.9110862  725.9507249 819.0891783 981.3119689 1253.8385762 1233.4350892 1170.4539780 1151.6202043 1199.1214718 701.6381387

Time (s) 17.15402660  16.31202990  17.74202720 17.77850720  20.80040750 17.81061850 16.68047750 17.52453090 16.68315500 17.02877280

%‘“’ ﬁ e

& n
: !
S

-——1-12

Fig. 5: IEEE 14-bus system [30].

Table IV shows the optimal dispatch solutions of the 5
generators in this system and the corresponding economic
emission costs. From this, it can be concluded that when
the 5 units output 173.62587860MW, 46.21477671MW,
19.15924469MW, 10.00000000MW, and 10.00000000MW
respectively, ACBOA achieves the minimum total economic
emission cost of 701.63813866$/h. In this state, the fuel
cost obtained by ACBOA is 686.48704641$/h, and the
corresponding emission is 0.18166861ton/h. The dispatching
capabilities of other algorithms are all weaker than that
of ACBOA. Especially when considering the Mean and
Std values, ACBOA demonstrates unparalleled stability, and
its time consumption also has an advantage. Fig. 6 also
intuitively confirms the strong performance of ACBOA in
terms of convergence accuracy and stability. Compared with
BOA and its variants, the excellent performance of ACBOA
once again illustrates that the improvements in this paper are
very effective.

In particular, Fig. 7 more intuitively reflects the optimal
result of economic emission dispatch. This result also shows

that the economic emission problem requires not only con-
sidering the economic cost but also taking into account the
control of pollutant emissions. Only by minimizing the total
cost of economic emissions can a reasonable dispatching
scheme be achieved, which also meets the requirements of
the current society for environmental issues.

B. Synchronous optimal pulse-width modulation (SOPWM)
for 3-level inverters

Synchronous optimal pulse-width modulation (SOPWM)
for 3-level inverters is a technology that achieves syn-
chronous operation while optimizing the pulse widths of 3-
level inverters, so as to realize efficient power conversion,
reduce harmonic distortion, improve the quality of the output
voltage, control electrical parameters more optimally, and
enhance the overall performance of the inverter system
[28]. The SOPWM for 3-level inverters problem is a 25-
dimensional constrained optimization problem, and its opti-
mal value is 0.03073936. The topological diagram is shown
in Fig. 8.

Table V and Fig. 9 present the results of the optimization
of this power engineering application by various algorithms.
Due to space limitations, only the performance indicators
are provided here. From this table, the time consumption
of each algorithm does not vary significantly, all falling
within the range of 16s to 20s. However, in terms of the
‘Best’ value, ACBOA’s value of 0.0319922000 is superior
to WOA’s 0.0319922534, SABOA’s 0.0319924000, GWO’s
0.0319922263, and CBOA’s 0.0319922958. Similarly, the
Std value of 0.1730051596 also demonstrates the remarkable
stability performance of ACBOA, which corresponds to Fig.
9(b). The convergence shown in Fig. 9(a) indicates that the
convergence accuracy of ACBOA is significantly improved
after 0.2x10° function evaluations (FEs), and this advantage
is maintained until the end, ultimately making ACBOA the
algorithm closest to the theoretical optimal solution.

C. Parameter extraction of photovoltaic cell model

Parameter extraction of photovoltaic (PV) cell model is
of crucial significance for accurately describing the electri-
cal characteristics of PV cell, evaluating its performance,
optimizing the design of PV system, predicting the power
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Fig. 6: Convergence curve and box plot for applying on economic emission dispatch (IEEE 14-bus system).
TABLE V
COMPARISON RESULTS OF SOPWM FOR 3-LEVEL INVERTERS.
Index BOA BKA CBOA GWO MABOA mMBOA PPSO SABOA WOA ACBOA
Best  1.0679914755 0.0319923000 0.0319922958 0.0319922263 1.0679924000 0.2751466646 2.8770242657 0.0319924000 0.0319922534 0.0319922000
Mean 10679921595 0.0665257200 0.0319923818 0.1967289781 1.0679924000 0.8098678433 5.4806570940 0.4118590655 0.4463923589 0.1243100630
Std  0.0000001809 0.1891468590 0.0000000384 0.5174570890 0.0000000000 0.3454827729 1.5219507217 0.5077772869 0.5162107369 0.1730051596
Worst  1.0679923995 1.0679924000 0.0319924000 2.8680468119 1.0679924000 1.0679923933 10.0086856962 1.0679924000 1.0679924000 0.7470218271
Time (s) 16.0637473  17.4887749  19.5258866  16.4810255  20.1860846  17.9347172 18.8096759 19.1965126  17.8564688  18.0134182
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Fig. 7: Optimal economic emission dispatch results of
IEEE 14-bus system.

generation efficiency, and gaining an in-depth understand-
ing of the behavior of PV cell under different operating
conditions. It serves as an important foundation for the
efficient application and development of PV technology. This
problem is a boundary-constrained optimization problem,
aiming to minimize the root mean square error (RMSE) of
the calculated current of the extracted model relative to the
measured current, as detailed in [10]. The equivalent circuit
diagram under three-diode modeling (TDM) is described
in Fig. 10. The tested model is PVM 752 GaAs, and the
dataset is obtained from [27]. The optimal parameter results

achieved by various algorithms are shown in Table VI, and
the convergence curve and box plot are illustrated in Fig. 11.

The results show that ACBOA found the best RMSE
(0.000229451) within 4.7556196s, outperforming algorithms
such as CBOA, BKA, mMBOA, and PPSO. Its stability
performance is also the best, achieving an Std value of
0.0000122. The convergence curve indicates that the initial
convergence speed of ACBOA is not satisfactory, but it
demonstrates excellent convergence accuracy in the later
stage. This suggests that these improvements in this paper
can help the algorithm escape from the trap of local op-
timality. The box plot shown in Fig. 11(b) also illustrates
the outstanding stability of ACBOA, which is significantly
stronger than that of BOA and other BOA variants.
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Fig. 9: Convergence curve and box plot for applying on SOPWM for 3-level inverters.
TABLE VI
PARAMETER EXTRACTION RESULTS OF PV CELL MODEL (PVM 752 GAAS UNDER TDM).
Parameter BOA BKA CBOA GWO MABOA mMBOA PPSO SABOA WOA ACBOA
Ipn (A)  0.0888325331 0.1001996409 0.1001877664 0.1002978134 0.0627364177 0.0999378913 0.0999571969 0.1053547413 0.1001307692 0.1001369526
T.q1 (A) 1.000000E-12 1.020936E-12 1.000000E-12 1.287949E-11 2.872776E-07 1.898039E-12 1.326421E-11 1.000000E-12 2.286951E-12 1.000000E-12
Isg2 (A) 1.000000E-12 9.130281E-12 1.000781E-12 3.163330E-11 1.209796E-07 1.001172E-12 1.000000E-12 1.000000E-12 1.489150E-11 5.834344E-11
Teqs (A) 1.000000E-12 1.659926E-11 1.000000E-12 6.660607E-12 5.654730E-08 2.276784E-12 1.001940E-12 1.000000E-12 3.546900E-12 1.000000E-12
R, (£2) 02108371660 0.6635028575 0.6666897070 0.6249428422 0.7234554337 0.6576940782 0.6281873344 0.6021766815 0.6320248375 0.6598853781
R, () 21193344611 503.76101185 518.36536083 501.25391605 652.59011771 798.40988693 790.83555725 69.54562505 778.04110741 641.49064876
ny 1325638589  1.543800560 1.575188309  1.960278443  2.000000000 1.644364475 1728989852  1.605666953  1.741638020  1.544807489
na 1.423450804  1.999983344  1.600650152  2.000000000  2.000000000  1.682315429 2000000000  1.605666953  1.740750714  1.972328012
ns 1342288120  1.881057077  1.643449811  1.665062486  2.000000000 1.619492049  1.613924789  1.605666953 1.730711959  1.951292234
RMSE  3.672459393  0.000236838  0.000235401  0.000344021 56.418052514 0.000243329  0.000289129  0.003036292  0.000443621  0.000229451
Mean  875.7103923  3.6094097 283727755  0.0012862  145.9560745  3.5951887 18.5506200  75.0967131  0.0221125 0.0002501
Std 7813560002  19.6105184  28.3656492  0.0018067 384376611  19.6131925  42.0912541 849355225  0.0344604 0.0000122
Worst  2886.283323  107.440059  82.906251 0.006623 212704153 107.440059  124.173854  322.810855 0.083251 0.000282
Time (s)  4.4597961 4.6557713 4.8381308 5.4795505 7.4413578 5.6720555 5.3977920 5.3184402 5.3324986 4.7556196
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Fig. 10: Equivalent circuit diagram of PV cell model built
with TDM.

D. Results analysis and discussion

The aforementioned 3 power engineering problems are
common and classical cases, with unknown search spaces
and complex constraint environments. This places extremely
high demands on the search capabilities of algorithms. Algo-
rithms are required to possess powerful exploration abilities
to find feasible solutions that are close to the optimal ones.
This is highly challenging and can effectively verify the
applicability of algorithms in solving practical engineering

problems. The comprehensive results fully demonstrate the
superiority of ACBOA.

In terms of parameter extraction of PV cell model,
ACBOA achieved the lowest RMSE of 0.000229451 within
a short time of 4.7556196s, outperforming several other
competitive algorithms. Its excellent stability, reflected by
the Std value of 0.0000122, combined with the unique
convergence pattern—slow initial convergence but high con-
vergence accuracy in the later stage—highlights the effec-
tiveness of the proposed improvements in escaping from
local optimal solutions. Regarding the SOPWM for 3-level
inverters, although the time consumption of different algo-
rithms was comparable, ACBOA obtained the best ‘Best’
value of 0.0319922000, which is closer to the theoretical
optimal value of 0.03073936 than those of other algorithms.
The Std value of 0.1730051596 and the convergence behavior
further confirm its superior performance and stability. In
the economic emission dispatch of the IEEE 14-bus system,
ACBOA achieved the lowest total economic emission cost
of 701.63813866%/h, while also achieving the optimal power
allocation for the 5 generators. Whether in terms of economic
cost or emission control, as well as in terms of the excellent
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Fig. 11: Convergence curve and box plot for applying on PV cell model.

stability indicators, it demonstrated advantages under differ-
ent evaluation criteria.

These results collectively demonstrate that ACBOA ef-
fectively balances the capabilities of exploration and ex-
ploitation, making it highly suitable for solving complex,
nonlinear, and multimodal optimization problems in power
engineering. The performance of this algorithm not only
validates the significance of the proposed adaptive and chaos
mechanisms but also provides a reliable solution approach for
similar power system optimization tasks.

VI. CONCLUSION

In conclusion, the traditional butterfly optimization algo-
rithm (BOA) has certain limitations in practical applications,
which motivated the development of the adaptive chaos BOA
(ACBOA) proposed in this study. By adaptively adjusting
the fragrance and switch probability in BOA, more precise
fragrance perception and search behaviors are achieved.
Meanwhile, the introduction of Tent chaos mapping leverages
its randomness and ergodicity to expand the exploration and
exploitation scope for each butterfly. The extensive numerical
experiments conducted using CEC2022 test suite revealed
that ACBOA exhibits superior performance compared to
9 other benchmark algorithms, demonstrating its enhanced
search efficiency and convergence accuracy. Furthermore,
the successful application of ACBOA to 3 distinct power
engineering problems, namely the parameter extraction of
photovoltaic cell model, synchronous optimal pulse-width
modulation (SOPWM) for 3-level inverters, and economic
emission dispatch, further validates its effectiveness. In these
real-world applications, ACBOA consistently outperformed
the comparative algorithms, achieving more optimal solu-
tions and showcasing remarkable stability and adaptability.

Overall, the proposed ACBOA not only overcomes the
shortcomings of the traditional BOA, but also demonstrates
strong potential in solving complex numerical computation
problems and practical engineering applications in the field
of power system, providing a promising approach for future
research and development in this area. However, despite
some limitations existing in this study, the proposed al-
gorithm mainly focuses on static optimization scenarios,

and its effectiveness in dynamic and real-time optimization
problems remains to be verified. Additionally, when dealing
with large-scale and high-dimensional problems in power
engineering, the computational complexity of ACBOA may
increase significantly.

In future work, we will make efforts to improve the
adaptability of ACBOA to dynamic environments. This
includes developing real-time optimization strategies and
incorporating time-varying factors into the algorithm frame-
work. To address the issue of computational complexity,
we will explore advanced parallel computing techniques
and lightweight optimization models. Moreover, expanding
the application scope of ACBOA to more complex power
engineering systems, such as smart grids with a high propor-
tion of renewable energy access, integrated energy systems,
and power distribution network reconfiguration, will also be
important research directions.
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