
 

  

Abstract—Under the context of current economic 

environments significantly influenced by external factors, this 

study constructs a fractional-order financial chaotic system 

incorporating quadratic external perturbation terms. The 

system employs new parameter and quadratic term to 

characterize the nonlinear amplification mechanism of external 

disturbances. Through rigorous analysis of Lyapunov 

exponents, attractors, state-space trajectory plots, and 

equilibrium points, we find that the proposed system exhibits a 

significantly higher level of dynamic complexity compared to 

traditional models. For stability control, adaptive sliding mode 

control is innovatively adopted for asymptotic stabilization 

analysis of the system’s equilibrium points. Through the design 

of nonlinear sliding manifolds and adaptive control rules, this 

method flexibly drives the system to converge to equilibrium 

points. In terms of chaotic synchronization under parameter 

uncertainties, an adaptive projective synchronization is 

introduced, which achieves rapid convergence of state errors 

between the response and master systems. Numerical 

simulations and theoretical proofs validated all the content 

presented in this paper. 

Index Terms—financial, dynamics, sliding mode control, 

adaptive projective, stabilization, synchronization 

 

I. INTRODUCTION 

HAOS, as a nonlinear dynamic phenomenon presenting 

quasi-random behavior in deterministic systems, is 

particularly complex and challenging in the economic field. 

This feature is particularly prominent in economic systems, 

where the inherent instability and complexity of economic 

operations allow minor external disturbances to be amplified 

through endogenous feedback mechanisms, potentially 

triggering systemic turbulences[1-6]. Since the first 

identification of economic chaos in the 1980s, studies have 

revealed the intrinsic instability of macroeconomic 

movements—chaos is essentially an inevitable outcome of 

nonlinear interactions within economic systems[7-11]. The 

chaotic characteristics of financial systems are epitomized by 

extreme sensitivity to external disturbances (the "butterfly 
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effect"), which underscores the urgency of investigating the 

dynamic behavior and control mechanisms of chaotic 

systems under perturbations[12]. Traditional integer-order 

models struggle to accurately describe the complex dynamics 

of financial markets due to their lack of memory and 

path-dependency modeling capabilities[13-16]. In contrast, 

fractional-order chaotic systems have become academic focal 

points since their inception, owing to their superior ability to 

characterize high-dimensional complex dynamics[17-21]. 

Stabilization and synchronization—central to chaos 

control—remain pivotal research topics in nonlinear 

dynamics, finding widespread use in fluid mechanics, 

electrical systems, and biomedicine[22-26]. Current 

approaches for chaotic system synchronization mainly 

encompass adaptive regulation, sliding-mode techniques, and 

drive-response coupling mechanisms, which establish 

fundamental theoretical support for fractional-order chaotic 

system regulation[27-30]. However, regarding the stability 

assessment of financial markets, traditional studies 

predominantly rely on simple linear or nonlinear control 

methods, with insufficient applications of adaptive sliding 

mode control for stabilizing equilibrium points in 

fractional-order systems[31]. Meanwhile, most 

synchronization research assumes known system 

parameters[32-33], whereas parameter uncertainties are 

pervasive in real-world financial environments, adaptive 

synchronization approaches become particularly valuable for 

handling scenarios with indeterminate parameters[34-35]. 

Chaos control research in the fractional-order framework 

must not only inherit control theories from integer-order 

systems but also improve algorithms to address the 

nonlocality and frequency-dependency characteristics of 

fractional calculus, thereby coping with the time-varying and 

complex correlation structures of financial data. 

Aiming to bridge the dual gaps in perturbation modeling 

and control strategies regarding fractional-order financial 

chaotic systems within existing literature, this paper 

constructs a novel system with quadratic external 

perturbation terms. By introducing quadratic terms to 

characterize the nonlinear amplification mechanism of 

perturbations and leveraging the high-dimensional 

representation capabilities of fractional calculus, the model 

achieves modeling of the financial markets. Regarding 

control methodologies, adaptive sliding mode control has 

been innovatively employed for the asymptotic stabilization 

analysis of system equilibrium points. Through the design of 
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nonlinear sliding surfaces and robust control laws, this 

approach overcomes the insufficient robustness of traditional 

methods to parameter perturbations. In addition, an adaptive 

synchronization algorithm based on projection gain is 

proposed to cope with the parameter uncertainty in the 

synchronization process. The real-time estimation of the 

unknown parameters is used to promote the fast convergence 

of state error among response system and main system. These 

findings not only expand the application boundaries of 

fractional-order chaos theory in finance but also provide new 

analytical tools for risk management and multi-system 

coordination in complex economic environments. 

This manuscript adopts the following organization: 

Section II elaborates on the reconstructed fractional-order 

chaotic financial framework. A dynamical analysis through 

different comparisons of the system is conducted in Section 

III. Section IV first applies sliding mode-based control 

method for asymptotically stabilization of the system. In 

Section V, an adaptive synchronization controller is 

formulated to secure the rapid convergence of the error 

system to zero, even with unknown system parameters. 

Finally, the research achievements of this article are 

summarized in Section VI. 

II. THE NEW CHAOTIC FINANCIAL SYSTEM WITH 

QUADRATIC PERTURBATION  

The financial sector's inherent complexity stems from its 

pronounced sensitivity to external perturbations. For example, 

government policy decisions, dynamic shifts in market 

behavior, and domestic or international emergencies can all 

significantly disrupt financial system stability. In recent years, 

the increasing frequency and intensity of domestic and global 

external disturbances have posed profound challenges to 

financial stability, making systematic research on mitigating 

their impacts critical for effective risk assessment and 

resilience enhancement. 

Building on extensive numerical experiments with 

classical financial systems, we introduce a quadratic term and 

an additional parameter into the system's third equation. The 

resulting modified system is: 

1 1 3 2 1

2

2 2 1

3 3 1 1 2

,

1,

.

x rx x x x

x sx x

x tx x mx x

= − + +


= − − +
 = − − −

 (1) 

The quadratic term 
1 2x x  in the equation represents the 

nonlinear coupling between savings volume and price index, 

characterizing the strong disturbances from current external 

environment. The newly introduced parameter m  serves as a 

perturbation factor, quantifying the collective impact of 

additional external influences on economic dynamics. 

It is widely recognized that fractional order provides a 

more realistic description of dynamic systems.  

The derivative of Caputo fraction [35]： 

0

1 ( )1
( ) ( )d

( )

n nD
n

   −− = − 
 −   , (2) 

where 1n n−    . 

According to the Caputo definition, the fractional order 

form of the improved system is: 

1

2

3

1 1 3 2 1

2

2 2 1

3 3 1 1 2

,

1,

.

q

q

q

D x rx x x x

D x sx x

D x tx x mx x

 = − + +


= − − +


= − − −

 (3) 

Where iq ( 1,2,3)i =  represents the different derivative 

order. 

III. DYNAMIC ANALYSIS OF THE SYSTEM (3) 

In this section, the system is analyzed from the following 

aspects. 

A. Lyapunov Exponents 

The dynamic behavior of a three-dimensional chaotic 

system can be characterized by the positive and negative 

combinations of its Lyapunov Exponents (LE). In phase 

space of the system, the positive or negative Lyapunov 

exponent reflects the stretching or contracting characteristics 

of the system in different directions, thus determining the 

chaotic behaviors. In addition, the Lyapunov dimension is a 

common discriminant. It is a fractal dimension derived from 

the Lyapunov exponent, serving to measure the dynamical 

properties of chaotic attractors quantitatively. 

The formula for calculating the Lyapunov dimension is: 

11

1
.

j

L i

ij

D j LE
LE =+

= +   (4) 

The impact of parameter m  is investigated by the system’s 

dynamic characteristics, Fig. 1 shows the variation curve of 

the Lyapunov exponent with respect to parameter m . 

 
Parameter m , as a variable of control, drives the system to 

evolve along the path of "order → bifurcation → chaos" by 

changing the positive or negative and magnitude of the 

exponent. It is a key tool for analyzing the system (3). 

In the section, the quantitative analysis of Lyapunov 

exponents on the dynamic behavior is given. When other 

parameters 0.9, 0.2, 1.55r s t= = = , m  takes the values of 

−0.6, 0.1, 0.5 and 0.8, respectively. Then, the system's 

chaotic properties are studied through several aspects such as 

Lyapunov exponent and Lyapunov dimension. Numerical 

calculations were carried out by MATLAB, and the exact 

results are shown in Table 1. The curves of the Lyapunov 

index varying with time are presented respectively in Figs. 

2–5.  

 
Fig. 1. Lyapunov exponents vs m. 
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B. Attractors, Phase Portraits, and Power Spectrum 

Diagrams. 

Attractor diagrams intuitively represent the long-term 

evolutionary trajectories of the system in the phase space. 

Phase portraits further describe the dynamic relationships 

between the state variables of system. Power spectrum 

diagrams (PSD) reveal the frequency components and their 

intensity distributions of system oscillations through 

frequency-domain analysis. In order to provide a 

comprehensive and intuitive description of the dynamic state 

of the system, this section demonstrates and analyses the 

dynamic behaviour of the system through these three aspects. 

To better investigate the complex dynamic behavior of 

system (3), we maintain all other initial conditions and  

parameters constant while varying the parameter m  . When 

2 31  0.01, 2.08, 0.06,x xx == =    0.996,iq = ( 1,2,3)i = , and  

0.9, 0.2, 1.55r s t= = = . Figs. 6–15 display the attractor 

diagrams, phase portraits, and the system's power spectrum 

diagrams corresponding to distinct parameter values m  (i.e., 

−0.6, 0.1, 0.5, 0.8).  

By analyzing the graphs associated with distinct parameter 

values, the system's dynamical behavior undergoes a 

sequential evolution: starting from periodicity, transitioning 

to weak chaos, then strong chaos, and finally reverting to 

weak chaos. In the periodic stage ( 0.6m = − ), the attractor 

diagram and phase portrait (Fig. 6 trajectory exhibits 

repetitive periodic characteristics, and the PSD plot (Fig. 7) 

displays discrete spikes corresponding to the dominant 

oscillation frequency of the system.  

TABLE I 

LYAPUNOV INDEX AND SYSTEM CHARACTERISTICS 

m Lyapunov exponents Lyapunov dimensions and Dynamic behavior 

−0.6 (0, 0.345435, 1.066914), (0, , )− −    − −  2LD = , Limit loop 

0.1 (0.026738, 0.004135, 0.937231), ( , , )− −    + − −  2.0241LD = , Chaos 

0.5 (0.104285,0,  0.602252), ( ,0, )−    + −  
2.1732LD = , Strong chaos 

0.8 (0.005489, 0.153947, 0.160393), ( , , )− −    + − − 2.003LD = , Weak chaos 

 

 
Fig. 5. Lyapunov exponents with m=0.8. 

 
Fig. 4. Lyapunov exponents with m=0.5. 

 
Fig. 3. Lyapunov exponents with m=0.1. 

 
Fig. 2. Lyapunov exponents with m=−0.6. 
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When entering the weak chaos stage ( 0.1m = ), the 

attractor begins to exhibit a fractal structure, the phase 

portrait trajectory becomes complex and non-repetitive, and 

continuous background noise appears around the discrete 

spikes in the PSD plot (Figs. 8–9). 

 

 

When 0.5m = , the system exhibits strong chaotic 

behavior, with the attractor forming a typical chaotic 

structure. The phase portrait trajectory fills the entire phase 

space region, and the PSD plot shows a continuous 

broadband spectrum (Figs. 10–11), confirming the presence 

of broadband components in the system. 

 

 

As parameter 0.8m = , system (3) re-enters the stage of 

weak chaos, with the above characteristics correspondingly 

weakening, the system's dynamical behavior is shown in Figs. 

12–13. 

 
Fig. 11.  Power spectrum diagrams with m=0.5. 

 
Fig. 9.  Power spectrum diagrams with m=0.1. 

 
Fig. 7. Power spectrum diagrams with m=−0.6. 

 
Fig. 10.  Phase portraits with m=0.5. 

 
Fig. 8.  Phase portraits with m=0.1. 

 
Fig. 6.  Phase portraits with m=−0.6. 
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C. Dynamic Behavior with Different Fractional-Order 

The fractional order serves as a critical parameter in 

fractional-order systems, significantly influencing their 

dynamical behaviors. In this section, while maintaining fixed 

starting states 
2 31  0.01, 2.08, 0.06,x xx == =  parameters 

0.9, 0.2, 1.55, 0.5,r s t m= = = =  we investigate the potential 

changes in the system states by varying the fractional order. 

When 
1 2 30.95, 0.97, 0.90,q q q= = =  the chaotic dynamics 

exhibited by system (3) are presented in Fig.14 and Fig.15. 

 

 
The sensitivity to fractional order can be seen from the 

Figs. 10–11 and Figs. 14–15. When the fractional order is 

different, the system's chaotic trajectory grows increasingly 

complex. 

System (3) in fractional order offers a more nuanced 

framework for analyzing financial dynamics compared to 

traditional integer-order models. Its ability to generate 

chaotic behavior under varying derivative orders makes it a 

valuable tool for simulating market instability, and exploring 

synchronization phenomena in interconnected economic 

systems. 

D. Dynamic Behavior with Different Initial Conditions 

In a chaotic financial system, even slight discrepancies in 

starting conditions may result in substantial differences in 

long-term evolutionary trajectories. To explore the system's 

sensitivity to initial conditions, we conducted numerical 

simulations by varying initial values.  When 

parameters 0.9, 0.2, 1.55, 0.5,r s t m= = = =  the derivative 

orders 
1 0.95,q =  

2 0.97,q =  
3 0.90,q =  initial values 

1  0.05,x =  
2  0.01,x =  

3  0.06.x =  The complex chaotic 

behaviors are shown in Fig.16 and Fig.17. 

 
In financial systems, policy intervention can be analogized 

to modifying the initial values of the system. Meanwhile, the 

leverage effect inherent in financial systems and investors' 

psychological biases can amplify the uncertainty of policy 

outcomes. The uncertainty caused by initial values in chaotic 

financial systems reflects the limitations of economic 

 
Fig. 13. Power spectrum diagrams with m=0.8. 

 
Fig. 12.  Phase portraits with m=0.8. 

 
Fig. 15.  Power spectrum diagrams with 

1 2 30.95, 0.97, 0.90q q q= = = . 

 
Fig.16.  Phase portraits with initial values (0.05,0.01,0.06). 

 
Fig. 14.  Phase portraits with 

1 2 30.95, 0.97, 0.90q q q= = = . 
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forecasting and the complexity of economic 

decision-making. 

 

E. Equilibrium and Stability 

To delve deeper into the complex characteristics of the 

system (3), an analysis of its equilibrium points is conducted. 

Solve the following equations: 

1 3 2 1

2

2 1

3 1 1 2

0 ,

0 1,

0 .

rx x x x

sx x

tx x mx x

= − + +


= − − +
 = − − −

 (5) 

The three equilibrium points of system (3) can be derived, 

where 1 (0,1/ ,0s = ）, the other equilibrium points 2 3,   is 

solved as follow: 

Lemma1. when ( ) / ( )s t rst m m t = − + + − , and 

parameters satisfy ( ) / ( ) 0s t rst m m t− + + −  : 

2

1 ( 1)
( , , ),

rt rm

t m m t




+ +
 =

− −
3

1 ( 1)
( , , ).

rt rm

t m m t




+ +
 = − −

− −
 

Furthermore, for the purpose of examining the equilibrium 

point's stability, the Jacobian matrix corresponding to system 

(3) is constructed: 

2 1

1

2 1

1

2 0 .

1

x r x

x s

mx mx t

− 
 

− − 
 − − − − 

 (6) 

Then the characteristic equations were derived: 
3 2

1 2 3( ) 0E       = + + + = . 

Thus, for the first equilibrium point 1,  substituting the 

parameter values yields the following characteristic equation: 
3 22.35 3.365 0.571 0  − − − = , 

the characteristic roots are 
1 3.3917,=  

2 0.8417, = −  

3 0.2. = − 1  is a positive real number, and
2 3,   are 

negative, so that 
1  is a saddle point with instability. 

For the equilibrium point 2 3,  , substituting the parameters 

gives the following equation: 

3 20.369 1.1214 1.1420 0  + + + = , 

and the roots are 
1 0.7872,= −  

2 0.2091 1.1861 ,i = +  

3 0.2091 1.1861i = − . The characteristic root 
1  is a 

negative real number, 
2 3,  are a pair of conjugate complex 

numbers, and the real parts which are positive. So that 
2 3,   

are unstable focus. 

This analysis highlights the intricate dynamic 

characteristics exhibited by the chaotic financial system, 

providing a more profound learning of its stability and 

equilibrium properties. 

IV. STABILIZATION BY ADAPTIVE SLIDING MODE CONTROL 

Sliding control of fractional dynamical systems is a control 

method that combines fractional calculus and sliding mode 

control strategy. This method has significant advantages in 

dealing with uncertainty and nonlinear problems, while 

effectively enhancing the response performance and 

robustness. 

When a system takes the form below:  

( ) ( ) (x, ) ( ( )) ( ) ( ).iq

tD X t AX t F t t t u t= + +  +  +  (7) 

Where ( )X t  denotes the state variable, A is the coefficient 

matrix, (x, )F t represents the nonlinear function, ( ( ))t  

stands for the model uncertainty term, ( )t  indicates the 

exogenous disturbance, and ( )u t  signifies the term 

responsible for control. 

Definition 1: For the uncertain fractional order system (7), 

when ,t T x( ) 0t  , if a constant (x(0)) 0T T=   exists, 

and satisfies lim x( ) 0
t T

t
→

= , the state exhibited by system (7) 

is capable of converging to zero within a finite period.  

For achieving system’s stabilization to the equilibrium 

point by adaptive sliding mode control, the following 

definition is given for the controlled system: 

1

2

3

1 1 3 2 1 1 1 1

2

2 2 1 2 2 2

3 3 1 1 2 3 3 3

( ( )) ( ) ( ),

1 ( ( )) ( ) ( ),

( ( )) ( ) ( ).

q

t

q

t

q

t

D x rx x x x t t u t

D x sx x t t u t

D x tx x mx x t t u t







 = − + + +  +  +


= − − + +  +  +


= − − − +  +  +

  (8) 

Where ( ( )) , ( ) ,i i i it t    1,2,3,i =  parameters 

,i i
are unknown, and , 0.i i   

Let all equilibrium point be denoted as
1 2 3( , , )   , and 

define the control error as: 

1 1 1

2 2 2

3 3 3

,

,

.

e x

e x

e x







= −


= −
 = −

 (9) 

The error system for the fractional controlled system is as 

follows: 

1

2

3

1 3 3 2 2 1 1

1 1 1

2

2 2 2 1 1

2 2 2

3 1 1 3 3 1 1 2 2

3 3 3

( )(e )

( ( )) ( ) ( ),

1 ( ) ( )

( ( )) ( ) ( ),

( ) ( ) ( )( )

( ( )) ( ) ( ).

q

t

q

t

q

t

D e e e r

t t u t

D e s e e

t t u t

D e e t e m e e

t t u t

  



 



   



 = + + + − +

             +  +  +

= − + − +


            +  +  +

= − + − + − + +

            +  +  +











  (10) 

Theorem 1: The designed of sliding mode function is: 

1

0
( ) ( ) , 1,2,3.i

t
q

i t i i is t D e e d i
−

= + =     (11) 

Where 0i  , and the control law is: 

 
Fig. 17. Power spectrum diagrams with initial values (0.05,0.01,0.06). 
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1 3 3 2 2 1 1

1 1 1 1 1

2

2 2 2 1 1

2 2 2 2 2

3 1 1 3 3 1 1 2 2

3 3 3 3

( ) ( ) ( )(e )

ˆ ˆ( )sign( ),

( ) 1 ( ) ( )

ˆ ˆ( )sign( ),

( ) ( ) ( ) ( )( )

ˆ ˆ( )sign(

u t e e r

s s

u t s e e

s s

u t e t e m e e

s s

  



 



   



= − + − + − +

            − + +

= − + + + +

            − + +

= + + + + + +

            − + + 3).













  (12) 

The adaptive law is given by: 

ˆ ,

ˆ .

q

t i i i

q

t i i i

D s

D s





 =


=

 (13) 

Where ˆ ˆ,i i
 are the estimated value of ,i i

, , ,i i i    is 

the positive real feedback gain of the controller, and the 

controlled system achieves progressive stability in finite 

time. 

Proof. When moving on the sliding surface, in order for 

the error system (10) to operate in sliding mode, the 

conditions below must be met: 

( ) 0,

( ) 0.

s t

s t

=


=
 (14) 

Differentiating the sliding mode function yields the 

following equation: 

( ) , 1,2,3.iq

i t i i is t D e e i= + =  (15) 

Consider the function ( ) 0=s t , the dynamics in sliding 

mode can be generated as: 

, 1,2,3.iq

t i i iD e e i= − =  (16) 

When ( ) 0,ie t →  based on Definition 1, the system (10) 

is asymptotically stable on the sliding surface. 

When not moving on the sliding surface, Lyapunov 

function: 
3

1

( ) i

i

V t V
=

=   is constructed, which is a 

positive-definite function: 

2 2 21 1 1ˆ ˆ( ) ( ) ( )
2 2 2

i i i i i i

i i

V s t
 

= + − + − , 1,2,3.i =  (17) 

Take the derivative of iV , the results of the calculations are 

as follows: 

1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

1 1ˆ ˆ ˆ ˆ( )( ) ( ) ( )i

q q q q

t i i t i i i t i i i t i

i i

q q q

i t i i i i i t i i i t i

i i

D V s t D s t D d D

s t D e e D d D

 


 

= + − + −

= + + − + −

  
ˆ ˆ( )( ( ( )) ( ) ( )sign( ))

ˆ ˆ( ) ( ) .

i i i i i i i i

i i i i i i

s t t t s s

s s

 =  +  − + +

    + − + −
 (18) 

By the properties of the sign function, we can obtain: 

ˆ ˆ( ( ( ) ( ) ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

.

q

t i i i i i i i i

i i i i i i

i i i i i i i

i i i i i i

i i

D V t t s s

s s

s s

s s

s

 





   +  − + +

             + − + −

         + − + +

             + − + −

        = −

   (19) 

When i are non-negative real number,  

3 3

1 1

( ) 0i i i

i i

V t V s
= =

=  −   . (20) 

According to the Lyapunov stability theory, 

( ) 0is t → , (21) 

therefore 

( ) 0ie t → , 1,2,3i = , (22) 

and Theorem 1 thus stands proven. 

Numerical Simulation: When the 

parameter 0.9, 0.2, 1.55, 0.5,r s t m= = = =  the fractional 

derivative
1 2 30.95, 0.97, 0.90,q q q= = =  initial value 

1 2 3 2.01,2.0( , , ) ( 8, 2 6 ,).0x x x =  the model uncertainty term 

( ( )) 0.5sin( ) ,i it t x = −  the external disturbance 

( ) 0.5sin( ).i t t =  At last, select the parameters 5,i =  

1.5i = , in light of the simulation findings, the controlled 

error system (10) asymptotic stability at zero, which verifies 

the validity of the control law  (12) and adaptive law (13). 

The numerical simulation results are presented in Figs. 

18–19.  

 

 
From the Figs. 18–19, it is evident that each state variable 

of the system exhibits asymptotic stability. Moreover, the 

adaptive sliding mode control method is not only applicable 

to nonlinear control systems but also effective for linear 

 
Fig. 19. Time evolution curves of controlled system (8) at P2,3. 

 
Fig. 18. Time evolution curves of controlled system (8) at P1. 
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control systems. This approach provides a practical 

framework for controlling economic systems, enabling 

policymakers or managers to implement dynamic 

interventions effectively. Furthermore, the methodology is 

highly generalizable and can be readily extended to other 

complex systems. 

V. SYNCHRONIZATION BY ADAPTIVE PROJECTIVE CONTROL 

In this section, adaptive projective synchronization is 

applied to synchronize the new system. The drive system is 

taken as system (3), with the response system defined as 

follows: 

1

2

3

1 1 1 2 3 1

2

2 1 2 2

3 1 3 1 2 3

( ),

1 ( ),

( ).

q

t

q

t

q

t

D w w w w w v t

D w w w v t

D w w w w w v t





 

 = − + + +


= − − + +


= − − − +

 (23) 

Where , , ,    is the estimates of unknown 

parameters , , , .r s t m The estimation errors of the parameters 

are expressed as:  

1 2 3 4, , , .r s m t      = − = − = − = −  (24) 

The synchronization error is given by: 

1 1 1 2 2 2 3 3 3, , .e w x e w x e w x= − = − = −  (25) 

The error system is obtained by subtracting (3) from (23): 

1

2

3

1 1 1 1 2 1 2 3 1

2 2

2 1 1 2 2 2

3 1 1 2 1 2 3 3 3

( ),

( ),

( ).

q

t

q

t

q

t

D e rx w w w x x e v t

D e x w sx w v t

D e e mx x w w tx w v t





 

 = − + − + +


= − + − +


= − + − + − +

 (26) 

The adaptive projective feedback controller is formulated 

as: 

1 1 2 1 2 3 1 1

2 2

2 1 1 2 2

3 1 1 2 1 2 3 3

( ) ,

( ) ,

( ) .

t x x w w e t e

t w x t e

t e w w mx x t e





 

= − − −


= − −
 = + − −

 (27) 

Where 1 2 3, ,t t t  are positive constants. The adaptive update 

law of the parameter estimates is designed as follows: 

1 1

2 2

1 2 3

3 3

,

,

,

.

q

t

q

t

q

t

q

t

D w e

D w e

D w w e

D w e









 =


=


=
 =

 (28) 

Theorem 2: Under the adaptive projective feedback 

control unit (27) along with adaptive law of parameters (28), 

the response system (23) achieves asymptotic 

synchronization with the drive system (3), this implies that 

the error system converges to zero. 

Proof. Substituting (27) into (26), the error system 

becomes: 

1

2

3

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 1 2 4 3 3 3

,

,

.

q

t

q

t

q

t

D e re w t e

D e se w t e

D e te w w w t e





 

 = − − −


= − − −


= − − − −

 (29) 

The Lyapunov function is considered: 

 

3 4
2 2

1 1

1
( ).

2
i i

i i

V e
= =

= +    (30) 

Derivative (30) and substituting (28) and (29), obtain: 

1 1 2 2 3 3 1 1

2 2 3 3 4 4

1 1 1 1 1 1 2 2 2 2 2 2

3 3 3 1 2 4 3 3 3

1 2

3

(

( )

( ) ( )

(

q q q q q

t t t t t

q q q

t t t

q

t

D V e D e e D e e D e D

D D D

e re w t e e se w t e

e te w w w t e

D r s

m

 

     

 

 

 









= + + +

          + + +

        = − − − ) + (− − − )

          + − − − −

          + − + −

          + − 4

2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

2 2

3 3 3 3 1 2 3 4 3 3

1 2 3 4

2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

2

3 3

) ( )

q q q q

t t t t

t

re t e w e se t e w e

te t e w w e w e

D D D D

re t e w e se t e w e

te t e

 

 

 

       

 

+ −

        =− − − − − −

          − −  − −

          + + + +       

        =− − − − − −

          − − 2

3 3 1 2 3 4 3 3

1 1 1 2 2 2 3 1 2 3 4 3 3

2 2 2 2 2 2

1 2 3 1 1 2 2 3 3

w w e w e

w e w e w w e w e

re se te t e t e t e

 

   

 − −

          + + + +    

        = − − − − − −

         

(31) 

In accordance with Lyapunov stability theory, asymptotic 

synchronization between drive system (3)  and response 

system (23) is achieved. 

Numerical Simulation: When parameters 

0.9, 0.2, 1.55, 0.5,r s t m= = = =  fractional orders 1 0.95,q =  

2 30.97, 0.90,q q= = control coefficients ( )0.5 1,2,3 ,it i= =  

initial estimates ( , , , ) (1,2,3,4)    = . For the drive 

system, its initial value is 1 2 3( , , ) ( 1, 2, )1 .x x x − − −=  As for the 

response system, its initial value is designated as 

1 2 3( , , ) 1, ,( )2 1w w w = . The graphical illustration of the data 

simulation results for the error system (26) is provided in Fig. 

20.  

 
As is readily apparent from the figure, three error states 

rapidly approach the origin. Thereby validating the 

effectiveness of the adaptive projective control laws designed 

in Theorem 2. These results suggest that, under certain 

conditions, economic systems of different regions or 

 
Fig. 20. Time evolution curves of error system (26).  
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countries can achieve synchronization. 

VI. CONCLUSIONS 

This study proposes a novel fractional-order chaotic 

financial system incorporating external disturbances to 

address the growing complexity of the global economic 

environment, demonstrating through dynamic analysis, 

stabilization, and synchronization that it can effectively 

model real-world financial behaviors like nonlinear 

interactions and stochastic shocks. The developed adaptive 

sliding mode control and adaptive projective synchronization 

methods offer robust solutions for stabilizing unstable 

equilibria and synchronizing heterogeneous systems with 

unknown parameters, outperforming other linear approaches. 

The system’s unpredictable evolution paths reflect the 

volatility of modern financial markets, highlighting the need 

for adaptive policy-making and accurate market analysis, 

while its synchronization capability facilitates global 

economic coordination to enhance financial stability and 

mitigate systemic risks. Advancing financial modeling and 

contributing to economic market sustainability, future 

research will focus on practical implementation in economic 

systems, integration with machine learning algorithms, and 

extension to other relevant complex systems for broader 

applications. 
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