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Abstract—This paper addresses the limitations of traditional
predator-prey models by constructing a modified Leslie-Gower
model that incorporates the dual effects of wind on predator for-
aging efficiency and human harvesting activities. We introduce
nonlinear functions ¢1(w) = 1+ kiw and ¢2(w) = 1 + kow
to quantify the dynamic impacts of wind speed on predator
search efficiency (negatively correlated) and human harvesting
intensity (negatively correlated). Through differential equa-
tion theory, we analyze the local/global stability of boundary
and positive equilibria, system persistence, and parameter
sensitivity, supported by numerical simulations. Key findings
include: (1) Wind speeds exceeding a critical threshold enable
prey populations to overcome extinction thresholds, ensuring
persistent survival. (2) Human harvesting efficiency significantly
decreases with increasing wind speed. (3) Predator density
exhibits non-monotonic variation with wind speed, while prey
density monotonically increases, asymptotically approaching
environmental carrying capacity. (4) The existence of a positive
equilibrium guarantees global asymptotic stability, highlight-
ing the crucial role of wind effects in maintaining system
equilibrium. This study provides theoretical foundations for
ecosystem management under extreme climates and supports
wind-direction strategies in fishery conservation.

Index Terms—Leslie-Gower model, predator-prey system,
wind effects, stability analysis, persistence

I. INTRODUCTION

N nature, the predator-prey relationship is one of the

most fundamental interspecific relationships. As a result,
research on predator-prey relationships has been a long-
standing focus for biomathematicians, as seen in [1]-[11]
and the references therein. Previous studies have primarily
concentrated on interspecific relationships, exploring the im-
pact of various functional response functions on the dynamic
behavior of systems, with few scholars investigating the
influence of environmental variables on ecosystems. It is
well known that wind plays a significant role in predator-
prey relationships. For instance, wind exposure at nest sites
can enhance the visibility of nests to aerial predators, thereby
potentially elevating the predation risk for the species [16].
Building upon this ecological premise, Jawad, Sultan, and

Manuscript received Feb 16, 2025, revised May 23, 2025. This
work is supported by the Natural Science Foundation of Fujian
Province(2024J01273).

F. D. Chen is a professor of College of Mathematics and Statistics, Fuzhou
University, Fuzhou, CHINA (e-mail: fdchen @fzu.edu.cn).

L. Q. Luo is a postgraduate student of College of Mathematics and Statis-
tics, Fuzhou University, Fuzhou, CHINA (e-mail: 2059667486 @qq.com).

Y. T. Huang is a postgraduate student of College of Mathe-
matics and Statistics, Fuzhou University, Fuzhou, CHINA (e-mail:
1104943637 @qq.com).

G. W. He is a postgraduate student of College of Mathematics and Statis-
tics, Fuzhou University, Fuzhou, CHINA (e-mail: 594047408 @qq.com).

Winter [17] introduced a predator-prey model that incorpo-
rates the influence of wind effects.

du U ouv

i ru(l—?) fmfequ, 1
T - (1)
a U7 p(w)+ Putc/) Rt

The authors thoroughly examined the dynamic behavior
of this model. However, the numerical simulations in [17]
showed that as wind speed increases, the population densities
of both predators and prey increase, which does not align
with the aforementioned ecological background. Recently,
Huang, Chen, Zhu, and Li [18] argued that model (1) does
not reflect reality and proposed a more reasonable model:

% = Tu(l - %) — ap(w)uv — equ,
dv (2)
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The authors gave a thoroughly investigation about the dy-
namic behaviors of the system (2). However, when con-
sidering more practical scenarios, model (2) still has some
shortcomings.

Firstly, model (2) uses a¢(w)uv to describe the predation
efficiency of predators on prey, where the predation efficiency
is a monotonically increasing function of wind. In reality, the
impact of wind on predator behavior is generally negative
[19]. Wind can alter the prey’s perception and activity
patterns. For instance, strong winds may mask the scent or
sound of prey, reducing the detection efficiency of predators.
Wind can also affect the escape behavior of prey. For
example, small mammals or insects may reduce their activity
in strong winds to lower the risk of predation[19][20][21].
Wind may also affect the search efficiency of predators. For
instance, avian predators may find it more difficult to locate
prey in strong winds [22]. Additionally, wind can change
the predation strategies of predators. Some predators may
choose to be active during periods of weaker wind [22].
Therefore, in a predator-prey system, it is more appropriate
for the functional response function of predators to be a
monotonically decreasing function of wind. This indicates
the necessity of proposing a more suitable predator-prey
model that reflects the decrease in predation efficiency with
increasing wind speed.

Secondly, model (2) uses equ to represent human harvest-
ing, assuming that human harvesting is independent of wind.
In reality, human harvesting is significantly affected by wind.
For example, in African hunting studies, wind direction and
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speed have been found to significantly influence the success
rate of hunters. Hunters typically choose upwind positions
to avoid prey detecting human scent. Strong winds can also
mask the sound of prey, increasing tracking difficulty[23].
In fishing activities in the North American Great Lakes,
wind direction and speed have been found to affect fish
distribution and fishing success rates. For instance, strong
winds can increase wave height, causing fish to move to
deeper waters, thereby altering fishing strategies [24]. In
entomological studies, wind direction and speed can af-
fect the efficiency of insect trapping. For example, when
trapping moths or butterflies, strong winds can make it
difficult for insects to fly or alter their flight paths, affecting
trapping outcomes[25]. In bird studies, wind direction and
speed can influence bird migration paths and flight altitudes,
thereby affecting the efficiency of bird trapping. For example,
tailwind conditions can increase bird flight speed, making
trapping more difficult[26]. In traditional fishing activities
on Pacific islands, wind direction and speed are considered
key factors determining fishing success. Fishermen choose
fishing locations and times based on wind direction [27].
This indicates that the harvesting term must account for the
influence of wind.

Based on the above analysis, we propose the following
model that better aligns with the actual ecological back-
ground:

du U auy equ
dat ru(l B ?) (W) pa(w)’
dv 1 v 3)
E = Sv - Tﬂ 9
$1(w)

where the variables u and v represent the population densities
of prey and predator species at a given time, respectively.
r, K, a,e, q,s,[3,c are positive constants.

We make the following assumptions to model the system
dynamics:

1. Prey population dynamics The prey population is
characterized by its intrinsic growth rate, environmental
carrying capacity K, predation rate o, and human harvesting,
which is quantified by the harvesting effort ¢ and harvesting
coefficient q.

2. Predator population dynamics The predator popu-
lation is governed by its intrinsic growth rate s and envi-
ronmental carrying capacity Qf—’; + ¢, where c represents
supplementary food sources avai%a le to the predator species.

3. Predator-prey interaction and wind effects The
predator-prey interaction is modeled using a Lotka-Volterra
type functional response au, where the number of prey
captured by predators is given by (gl{g). The wind efficiency
function ¢ (w) = 1+kyw incorporates wind speed w through
a positive constant ki, under the following assumptions:

(a) Under windless conditions (w = 0), the predator’s
search efficiency remains at its baseline level, i.e.,
$1(0) =1;

(b) The predator’s search efficiency decreases monoton-
ically with increasing wind speed, while remaining
positive for all w, i.e., ¢1(w) > 0.

4. Wind effects on human harvesting The impact of wind
equ

on human harvesting is modeled by the term P2l where

the wind efficiency function ¢2(w) = 1 + kow incorporates

wind speed w through a positive proportionality constant ko.

This formulation is based on two key assumptions:

(a) Under windless conditions (w = 0), the harvesting rate
remains at its baseline level, i.e., ¢2(0) = 1;

(b) The harvesting efficiency exhibits an inverse relation-
ship with wind speed, maintaining positivity throughout
the operational range, i.e., ¢o(w) > 0.

This paper aims to comprehensively analyze the dynamic
behavior of system (3) and elucidate the role of wind effects
in shaping the system’s dynamics. The structure of the paper
is organized as follows: Section 2 establishes the fundamental
properties of the solutions, including their positivity and
boundedness; Section 3 investigates the existence and local
stability of equilibrium points; Section 4 investigates the
extinction property of the system; Section 5 extends the anal-
ysis of local stability to global stability; Section 6 explores
the conditions for system persistence; Section 7 investigates
the effect of wind; Section 8 investigates the dynamical
behaviors under extreme scenarios; Section 9 validates the
theoretical results through numerical simulations; and finally,
the concluding section synthesizes the influence of wind
effects on the system’s dynamics and underscores the novel
contributions of this study.

II. POSITIVITY AND BOUNDEDNESS OF SOLUTIONS TO
SYSTEM (3)

Regarding the positivity of solutions to system (3), we
have the following result.
Theorem 2.1 The non-negative quadrant Ry = {(u,v) €
R?|u > 0,v > 0} is positively invariant under the dynamics
of system (3).
Proof From (3), for all ¢ € [0, +00), we have:

u(0) exp {/Otl“ldt} >0,
v(0) exp {/Ot I‘th} >0

<
—

~
N

where
B uy  av e
o= 7”<1 K) o(w)  da(w)’
r, = S<l_ﬂv)' “)
7u+c
¢1(w)

Thus, Theorem 2.1 is proven.

Theorem 2.2 The solutions u(t) and v(t) of system (3)
with initial conditions u(0) > 0 and v(0) > 0 are uniformly
bounded.
Proof
From the first equation of system (3), we derive the

inequality:

du <ru (1 - g)

dt — K/’
which describes the upper bound of the prey population
growth. Applying Lemma 2.3 from [35] to this inequality,
we establish the following result:
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limsupu(t) < K. 5)
t—+oo
This implies that the prey population u(t) is asymptotically
bounded above by the carrying capacity /. Consequently, for
any sufficiently small positive constant € > 0, there exists a
time 77 > 0 such that for all £ > T7, the following inequality
holds:

u(t) < K +e. (6)

For t > T3, combining the second equation of system (3)
with inequality (6), we derive the following upper bound for
the predator population growth:

dv sv(l v )
b -
dt ¢1(w) +c

v
- B(K+e)
giw) T

Applying Lemma 2.3 from [35] to this inequality, we
obtain the asymptotic bound for the predator population:
K
limsupv(t) < Bl +e) +c. @)
t—+oo ol (w)

Since ¢ is an arbitrarily small positive constant, taking the
limit as € — 0 in (7) yields:

limsupv(t) < ﬁ + c. )

t—+o0 p1(w)

The inequalities (5) and (8) demonstrate that the solutions
u(t) and v(¢) of system (3), with initial conditions u(0) > 0
and v(0) > 0, are uniformly bounded. This completes the
proof of Theorem 2.2.

III. EXISTENCE AND LOCAL STABILITY OF
EQUILIBRIUM POINTS IN SYSTEM (3)

Regarding the existence of equilibrium points in system
(3), we have the following result.

Theorem 3.1 System (3) always admits two bound-
ary equilibrium points: the vanishing equilibrium E(0,0),
where both prey and predator populations are extinct, and
the prey-free equilibrium F5(0,c), where the prey popula-
tion is extinct while the predator population stabilizes at
c¢. Furthermore, under the condition ¢o(w)r > qe, there
exists a predator-free equilibrium FE1(m,0), where the prey
population stabilizes at m = W
population is extinct.

Additionally, if the following condition holds:

and the predator

P2 (W) rd1 (W) > @2 (W) ac + eqoy (W) , )

then there exists a unique positive equilibrium point
Es(u*,v*), where:

. Aw)
o2 (w) (Kozﬁ + roy (w)2)

; (10)

and v* satisfies v* = fl ’(Lw) + ¢, where
Aw) = 61 (@) K (d2(w)ac o
62 ()71 (@) + eqn (@) )-
Proof

The equilibrium points of system (3) satisfy the following
equations:

ru(l— %) — —— — =0,
K di(w)  da(w)
(12)
sv <1 — v ) = 0.
pu te
¢1(w)

From the second equation of (12), we obtain v = 0 or
v = qf (1; y e Substituting v = 0 into the first equation of

(12), we obtain:

U equ

?  ha(w)

The solutions to equation (12) are u; = 0 and us =
W. Therefore, system (3) has a zero equilibrium
point E((0,0). Additionally, if the condition ¢o(w)r > ge
holds, then there exists a predator-free equilibrium point
E 1 (ﬂ' 5 O) .

Substituting v = % + c into the first equation of (12),
we obtain:

ru(l — =0. (13)

Bu
ou(—— +¢)
_uy o i(w) _oequ
ru(l K) 1) 52(@) 0. (14)

Under the condition (9), equation (14) has a unique posi-
tive solution u*, where u* is given by (10). Therefore, system
(3) has a unique positive equilibrium point Eo(u*, v*). This
completes the proof of Theorem 3.1.

Theorem 3.2

The vanishing equilibrium Ey(0,0) is always unstable. For
the prey-free equilibrium F5 (0, c), if the condition

P2(w)rdr(w) < da(w)ac + eqpr (w) (15)
holds, then FE5(0,c¢) is locally asymptotically stable. In
contrast, the predator-free equilibrium FE,(7,0) is always
unstable. Furthermore, if the condition

P2(w)rd1(w) > da(w)ac + eqpr (w) (16)
is satisfied, then the positive equilibrium Es(u*,v*) is locally
asymptotically stable.

Proof The Jacobian matrix of system (3) is calculated as:
Jiw Ji2
7= )

Joa

Jo1 17

where:
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u T™U Vo eq
ho= r(1-Lyom_o e e
1 K) K ¢ (W) ¢ (w)
au
Ji2 = -,
12 ¢1(w)
2
SvU
J21 == ﬂg )
(55 +¢) o)
Jop = S(l Buv > 5:1] .
S T¢) Fwy TC

The Jacobian matrix of system (3) evaluated at the van-
ishing equilibrium point Ey(0,0) is given by:

@2 (w)r — ge 0
JE0,0) = balw) )
s
The eigenvalues of J(Ey) are A\; = % and \g =

s > 0. Therefore, E(0,0) is unstable.
The Jacobian matrix of system (3) at the predator-free
equilibrium point E4(@,0) is:

An

JE @) = (15 2,

S

where:

- _Pa(w)r—ge\ Pa(w)r—ge  ge
Ay = (1 b2 (W) ) b2 (w) )

7¢>2 (w)r — ge
¢2 (w)

_aK (g2 (w)r —qe)
d2 (W) rd1 (w)

The eigenvalues of J(E7) are \y = A1; and Ay = s > 0.
Therefore, E1(u,0) is unstable.

The Jacobian matrix of system (3) at the prey-free equi-
librium point E5(0, ¢) is:

A12

Bll 0
J(E ,C)) = s ’
(F2(0:) <¢1<ﬂw) _s>
where:
> g9c
Bu o1 (@) b2 (@)
_ —s(w)actds () rér (w) — eqds (W)
$1 (w) g2 (w) '

The eigenvalues of J(Es) are \y = Bi; and Ag = —s <
0. Therefore, when condition (15) holds, F(0, ¢) is locally
asymptotically stable.

The positive equilibrium point E5(u*, v*) of system (3) is
determined by the following system of equations:

) "5 @ R
< o ) (18)
sll———— | =
Bu*
or@) ¢

The Jacobian matrix of system (3) at the positive equilib-
rium point Fs(u*,v*) is:

D1 Do
= (B B
Bl )=\ Dy D
where:
u* ru* vra eq
D = 7r|{ll-=)]-—=— — —
H ( K> K ¢1(w) ¢2(w)
_
= il
au™
D =
12 o1 (@)
s ’U* 2
Dy = 5 ( )g ;
u
+c w
(¢1 ® ) ¢1 (w)
_ S8
¢1 (W)’
v* sv*
D22 = S<1_ Bu* >_ Bu*
¢1(w) +e #1(w) T
_ sv*
- T Bur
i) T€
= —s.

Note that condition (16) is equivalent to:

ac eq
@ aw >
Using (18), we can calculate:
Tr(J(By(u",v))) = Dy + Do = =2 =5 <0
and
Det(J(Es(u*,v")))
= D11D23 — D13Dy
_ ru* I5) au*
= (% +¢1(w)¢1(w))
B vt e 6 ou*
- e m@ T E@n@)
pu*
o _0[(¢51(u))+0)jL eq B ou
1 (w) b2 (w)  ¢1(w) o1 (w)
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N R
¢1(w) @2 (w)
< 0.

Thus, under condition (16), both eigenvalues of the Jaco-
bian matrix J(E5(u*,v*)) have negative real parts, which
implies that the positive equilibrium FEs5(u*,v*) is locally
asymptotically stable. This completes the proof of Theorem
3.2.

IV. EXTINCTION ANALYSIS

In the previous section, we demonstrated that the
boundary equilibrium points Ey, and FE; are unstable,
whereas the boundary equilibrium point Es and the positive
equilibrium point FEs are locally asymptotically stable
under specific conditions. A natural extension of these
results is to explore their global stability properties. In
this section, we aim to derive sufficient conditions for
the global asymptotic stability of the prey-free equilibrium
point E5(0, ¢). Specifically, we establish the following result.

Theorem 4.1 Under the condition (15), the prey-free
equilibrium point FE5(0,c) is globally asymptotically stable.
Proof
For a sufficiently small € > 0, without loss of generality,
we assume:
«

Under this assumption, inequality (15) implies:
a(c—e¢

(c—e)  _eq

1(w)  P2(w)
From the second equation of system (3) and the positivity

of solutions, we derive the following lower bound for the
predator population growth:

dv v v
L SR Y
dt Bu_ | & ¢

Applying Lemma 2.3 from [35] to this inequality, we ob-
tain the asymptotic lower bound for the predator population:

r< 20)

liminf v(t) > c.

t—+o00

21

Furthermore, for any sufficiently small positive constant
€ > 0 satisfying € < §, there exists a time 71 > 0 such that
for all ¢ > T, the inequality v(¢) > ¢ — & holds.

For t > T, from (20) and the first equation of system (3),

we have:

du U auv equ
dat ru(l B ?) B @1 (w) B ¢2(w)
u au(c —¢€) equ
< ru(1- E) - hw @
_alc—¢g)  eq
< (r ¢1(w) ¢2(w))u,
therefore:

au(c—¢)  equ
Pr(w)  P2(w)

From this, we can see that as t — +o0o:

u(t) < u(Ty) exp [(r— )(thl)}. (23)

lim w(t) =0. (24)

t——+oo

Equation (24) indicates that there exists 75 > T3 such that
for all ¢ > 15, we have:

u(t) < e. (25)

For ¢t > 15, from the second equation of system (3) and
equation (25), we have:

dv v
TR
CN

$1(w)
v
Be
+c
$1(w)
Applying Lemma 2.3 from [35] to the above inequality,
we obtain:

(26)
< sv|ll-—

. Be
limsupv(t) < —— +c.
e ) $1(w)
Since ¢ is an arbitrarily small positive number, letting £ —
0 in equation (27), we obtain:

27

limsupv(t) < c. (28)
t—+o0

Combining equations (21) and (28), we have:
t_1:+moo v(t) = c. (29)

Equations (24) and (29) show that the prey-free equilib-
rium point F5(0,c) is globally asymptotically stable. This
completes the proof of Theorem 4.1.

V. GLOBAL STABILITY OF THE POSITIVE EQUILIBRIUM
POINT E* = (u*,v*)

The objective of this section is to conduct a study on

the global stability of the positive equilibrium point within

system (3). Specifically, we obtain the following result:
Theorem 5.1 If the following condition holds:

¢2 (W) rd1 (W) > @2 (W) ac+ eqoy (w)

then the positive equilibrium point Es(u*,v*) is globally
asymptotically stable. This means that as long as the positive
equilibrium point exists, it is globally asymptotically stable.
Proof Previously, we proved that Ey, and FE; are both
unstable. Moreover, under the assumption that condition (30)
holds, the proof of Theorem 3.2 shows that the Jacobian
matrix of 5 has a positive eigenvalue, and thus Fs(0, ¢) is
also unstable. To prove that F3(u*,v*) is globally stable, we
only need to show that there are no limit cycles in the first
quadrant of the system. According to the theory of limit sets
in planar systems, all solutions will eventually converge to
the positive equilibrium point E'3 as time approaches infinity.

(30)
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1

Consider the Dulac function B(u,v) = u~tv~!. We can

calculate:
0(PB) N 9(@QB)
ou ov
(- %)-% -5 o
- Uv
ru(l- %) ~ %) ~ Baw)
_ 1(w 2 (W 31
0 (31
s
Bu
(st +¢)
_ _K¢1 (W) sv + ¢1 (W) eru + Bru?
- uKv (cpy (W) + Bu) ’
where:
_ _wy o ouv  equ
P(u,v) = ru(l K) @) @)
32
Qu,v) = 8<1_ﬂuv>' 52)
+c

$1(w)

According to the Bendixson-Dulac criterion [36], there are
no closed orbits in the first quadrant. Since the solutions of
system (3) are bounded and F’5 is the unique positive equi-
librium point, it follows that E5 is globally asymptotically
stable.

This completes the proof of Theorem 5.1.

Remark 5.1 Based on Theorem 5.1, we are aware that as
soon as the positive equilibrium point comes into existence,
it exhibits global asymptotic stability. This, in turn, indicates
that within system (3), no bifurcations occur at Fs.

VI. UNIFORM PERSISTENCE

From a biological perspective, if an ecosystem can persist,
it means that each population in the system can survive in
the long term. In this section, we will use the methods of
Jawad et al. [14] and Huang et al. [15] to provide a set of
sufficient conditions that ensure the persistence of system
(3). In fact, we have the following theorem:

Theorem 6.1 If the following condition holds:

¢2 (W) rd1 (W) > @2 (W) ac + eqoy (w)

then system (3) is uniformly persistent.

Proof We have already proven that the system has no limit
cycles. Therefore, the limit set of the system can only
consist of equilibrium points. If we can show that under the
conditions of the theorem, the boundary equilibrium points
Ey, E1, and E> cannot be the w-limit set of system (3), then
the trajectories of the system must lie in the interior of the
first quadrant, and thus the system is persistent.

Let’s consider the persistence function w(u,v) = u®®,
in which a and b are positive constants. Evidently, for every
(u,v) belonging to the positive two-dimensional real-valued
space R, the value of w(u,v) is greater than 0. Moreover,
when either w approaches 0 or v approaches 0, the value of
w(u, v) approaches 0. Now, we are able to calculate:

(33)

B(u,v) = %Za(’“(l‘ %) ‘% _%)

+c)>.

+b(8<1_3uv

o1 (w
1(w) 34)
From this, we can calculate for all a,b > 0:
€q
d(E - b
(Eo) a(r ¢2(w))+ s > 0,
O(E;) = bs>0, (35)
ac eq
O(E alr——————) >0,
(B2) = o= 505~ )

Equations (35) indicate that Fy, F1, and F5 cannot serve
as the limit set of system (3). Utilizing Gard’s method, as
presented in [37], it can be concluded that system (3) is
persistent.

VII. THE IMPACT OF WIND EFFECTS

Jawad et al. [17] and Huang et al. Huang et al[18] both
assumed that the wind effect is modeled as 1 + w, where
w represents the strength of the wind. However, we believe
this is not entirely reasonable, as it does not account for the
different impacts of wind on predator foraging and human
harvesting. Therefore, we introduced ¢ (w) = 1 + kw
and ¢o(w) = 1 + kow, where ki and ko are positive
constants. Clearly, when the two populations coexist, their
final densities will be influenced by k7 and ks. Therefore, it is
crucial to investigate the interplay between these parameters
to better understand their influence on the system dynamics.

This section provides a detailed exploration of the rela-
tionship between u*, v*, and ki, ko.

A. Relationship between u* and ki

First, from equation (10), u* can be expressed as:

D(k1)’
where:
N(ki) = —(1+ klw)K{u + kow)ac
—(1+ kow)r (1 + kw)
(36)
+eq(l+ k‘lw)},
D(ky) = (14 kow) [KQB +7r(1+ klw)z} .
Thus, we have:
ow _ DU - N
Ok, D(k1)?
Note that:
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ON (k1)
k1

= —wK|(1+ kow)ac— (14 kow)r(1 + kiw)

+eq(1 + klw)}
—(1+ kw)K [—(1 4 kow)rw + equ]
= —wK(1+ kow)ac+ wK (1 + kaw)r(l + kw)
—wKeq(1+ kiw) 4+ (1 + k1w)K(1 4 kaw)rw
—(1+ kw)Keqw
= —wK({1+ kw)ac+ 2wK (1 + kaw)r(l + kiw)
—2wKeq(l + kjw).

(38)
and:
9D (k1
G = k) (s Re]
= 2wr(l+ kow)(1 + k1w).
Substituting 31\6/](::1) and aggfl) into equation (36), we
have:
dur (14 kow) [KaB+r(l + kw)?| A1 — By 40)
Ok (14 kow)? [KafB +r(1+ kw)?]”
where:
A = —wK(1+ kw)ac+ 2wK (1 + kaw)r(l + kw)
—2wKeq(l + kw),
By = N(k1)[2wr(l + kow)(1 + kyw)] .

Since the denominator of equation (40) is always positive,
we only need to analyze the sign of the numerator. Note
that under the condition for the existence of the positive
equilibrium point, Ny(k1) > 0. Therefore, the sign of the
numerator is mainly determined by:

A = —wK(+ kw)ac

F2wK (1 4 kow)r(1 4+ kiw)
—2wKeq(1+ kw).

(41)

By applying the condition for the existence of the positive
equilibrium point, it can be readily verified that:

A > 0. (42)
This implies:
ou*
0. 43
ok, > (43)

In other words, u* is a monotonically increasing function
of kl.

From an ecological perspective, this conclusion is easy
to understand. As kj increases, ¢;(w) = 1 + kjw in-
creases, which reduces the search efficiency of predators.
This decreases the predation pressure on prey, leading to an
increase in the prey population density u*. In other words,
the negative impact of wind on predator search efficiency
results in an increase in prey density.

B. Relationship between v* and ky
Note that v* is expressed as:

. P
v = +c,
$1(w)
where ¢1(w) =1 + kyw.
Using the chain rule, the partial derivative of v* with

respect to kj is:

o+ T (w) — Butw
ks ¢1(w)?

Since g—zj > 0, the first term %%(w) is positive. The
second term —fu*w is negative. Therefore, the sign of the
numerator depends on the relative magnitudes of these two
terms. As k; increases, ¢ (w) increases, reducing the search
efficiency of predators and decreasing the predation pressure
on prey, which leads to an increase in prey density. However,
the increase in ¢; (w) may also cause 2}5 ¢1(w) to decrease.
Overall, the change in v* depends on the relative changes in
u* and ¢ (w). If the increase in u* is not sufficient to offset
the increase in ¢ (w), then v* will decrease. Specifically,
when g—zrrj)l(w) < Bu*w, we have g—}éj < 0, meaning v*
is a monotonically decreasing function of k;. Conversely,
if %(bl(w) > Bu*w, then g—};: > 0, meaning v* is a
monotonically increasing function of k;.

From an ecological perspective, as the search efficiency
of predators decreases, the density of prey increases. As
the number of prey increases, the density of the predator
population also increases. However, the increase in prey
density is limited. Beyond a certain point, as wind effects
further increase, the ability of predators to capture prey
decreases, ultimately leading to a gradual decrease in the

final density of the predator population.

(44)

C. Relationship between u* and ks

First, from equation (10), u* can be expressed as:
N (klw—i—l) KCl(kg)

U = 9
(kaw + 1) (Kaﬂ o (kw + 1)2>

where:

Ci(k2) = ((kzw +1)ac
= (kaw + 1) 7 (krw + 1) (45)
+eq (kiw + 1))
Thus, we have:
ou*
Oks

(kiw+ 1) K (wac — wr (kiw + 1))
(kow 4+ 1) (Kaﬁ +r (kyw+ 1)
(kw4 1) KCs(ke)w
(kow + 1) (Kaﬁ +7r(kw+ 1)2) (46)
(kyw + 1)* Kweq
(kaw + 1) (Kozﬁ + 7 (kw+ 1)2>
> 0.

This shows that ©* is a monotonically increasing function
of k2. From an ecological perspective, as the impact of wind
increases, humans expend the same effort but harvest fewer
fish, which benefits the survival of the fish population.

_|_

Volume 33, Issue 9, September 2025, Pages 3818-3838



Engineering Letters

D. Relationship between v* and kow

From equation (10), the expressions for v* and v* are:

*= (kiw+1)H
v (kaw+1) (K aB+r(kiw+1)?)’ a7
where o
H é K k 1 _K
( 2w + )B’I" Beq (48)
tc (klw + ].) (kgw =+ 1) r.
Thus, we have:
ov*
Oka
(klw + ]‘) (KUJﬂT‘ +c (k1w —+ ]_) wrr)
(kaw +1) (KaB + 1 (kyw +1)°)
(kiw+1)Hw (49)

(kow + 1)2 (Kaﬁ +7r(kw+ 1)2)
(kiw + 1) wK Beq

(kow + 1)2 (k12w27“ + KafB + 2kiwr + 7“)
> 0

This shows that v* is a monotonically increasing function
of kew. From an ecological perspective, as the impact of
wind increases, human harvesting decreases, which benefits
the growth of the prey population. As the prey popula-
tion grows, the food available to the predator population
increases, ultimately leading to an increase in the density
of the predator population.

E. Impact of wind effect w on the positive equilibrium point

Theorem 4.1 in Huang et al. [18] shows that when w = 0
(i.e., no wind), if the following condition holds:

r < ac+ eq (50)

Consequently, the prey-free equilibrium point E5(0,c¢) is
asymptotically stable on a global scale, meaning the prey
species goes extinct. Note that condition (9) is equivalent to:

.o _OcC eq
¢ (W) P2 (w)

As w approaches infinity, both ¢;(w) and ¢2(w) approach
infinity. This implies that as long as w is sufficiently large,
condition (51) will necessarily hold. In other words, when the
wind speed is sufficiently high, the system will necessarily
have a positive equilibrium point. Theorem 5.1 has already
shown that the existence of a positive equilibrium point
implies local asymptotic stability. This indicates that wind
effects can effectively increase the probability of coexistence
between the two populations, contributing to the stability of
the ecosystem.

As the wind speed w increases, ¢1(w) increases, meaning
the search efficiency of predators decreases. This reduces
the predation efficiency of predators on prey, potentially
increasing the prey population density u*. As the wind speed
w increases, ¢o(w) also increases, meaning the efficiency
of human harvesting decreases. This reduces the impact of
human harvesting on prey, potentially increasing the prey
population density u*.

61y

When w approaches infinity, from the proof of Theorem
4.1, we know that lim; o v(t) > c. In other words, the
density of the predator population will eventually be no less
than c. Note that z¢= — 0 and % — 0. This means
that as w approaches infinity, the limiting equation of the
first equation in system (3) is:

du U

o 1_7)7 52

== (1 ¢ (52)
Thus, as t — 400, we have lim;_, . u(t) = K. In

other words, if the wind is sufficiently strong, the impact
of the predator population and human harvesting on the
prey population becomes negligible, and the prey population
density eventually approaches its environmental carrying
capacity.

FE. Impact of other food resources

From equation (10), what the expressions of u* and v*
reveal is that other food sources play a crucial part in the
system’s persistence and stability. After calculation, we get:

du* (kiw+1)Ka

de _Kozﬁ—l—r(klw—Fl)Z

<0,

dv* (kiw + 1)2 r
dc Kaf +r (kw+ 1)2

As other food resources increase, the density of the
predator species increases. As the predator population grows,

the demand for food also increases, ultimately leading to a
decrease in the density of the prey population.

VIII. DYNAMICAL BEHAVIORS UNDER EXTREME
SCENARIOS

A. Windless environment (w — 0)

When wind speed approaches zero, the system reduces to
the classical Leslie-Gower model:

%‘ = ru (1— %) — auv — equ,
dv v (53)
G = sv (1——Bu+c).

Equilibrium Stability:

o Prey-free equilibrium E5(0,c): Globally stable if r <
ac + eq.

e Positive equilibrium Es(u*,v*): Exists and is globally
stable if r > ac + eq.

B. Extreme wind speed (w — 00)

Under extremely high wind speeds, the system decouples
approximately:

du ~ u
Zt ~ ru(l-%), (54)
G = sv (1 — %) .

Equilibrium Analysis:

o New equilibrium E4(K, c): Eigenvalues A\ = —r/K,

A2 = —s/c indicate a stable node.

o Ecological implication: Prey density approaches carry-
ing capacity K, while predators rely on external food
source c.
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C. Mutation phenomena near critical wind speed
Saddle-node bifurcation mechanism: At critical wind
speed w, satisfying:

ac eq
r

klwc k2wc’

the positive equilibrium E3 collides with the boundary equi-
librium FEj5, triggering a dynamical phase transition.

D. Lyapunov exponent analysis

A: Calculation Method
1. Jacobian linearization:

S ( of Jou  df/ov ).

dg/0u  dg/dv
2. Eigenvalue solving:

Ny Tr(J)£/Tr(J)? - 4Det(J)_
’ 2
3. Maximum Lyapunov
max(Re(A1), Re(A2)).
B: Exponent Variation Rules

(55)

exponent: Amax =

TABLE 1
VARIATION OF LYAPUNOV EXPONENTS WITH WIND SPEED

Wind Speed Range | Dominant Equilibrium | A\p.x Sign
w < We E3 Negative
W = We Bifurcation point Zero
w > We Es> Negative

E. Ecological management implications

e Critical wind speed threshold: Set w. as the upper
fishing ban threshold in fishery policies.

« Adaptive management: Monitor population density
mutation risks when w > w,,; (optimal wind speed for
peak predator density).

« Climate change adaptation: Dynamically adjust man-
agement strategies as long-term wind distribution shifts
alter bifurcation thresholds.

IX. NUMERICAL SIMULATIONS

Example 9.1
Now, let’s conduct a study on the following model:

du u(l_i)_L
dt 10 1401 xw
_ 0.5u
1+01x5 (56)
dv v
= = o1 -
dt ( = +2>

1+01xw

In this model, when compared with system (3), we set
r=1,K=10,a=1,e=05,¢q=1,s=1, § =1,
Cc = 2, k?l =0.1 and k‘g =0.1.

(1) Take w as the bifurcation parameter. Since
r =1 < ac+ eq = 2.5, from the continuity of the function,
for w not so large, r < % + %, it follows from
Theorem 3.1 that the system has no positive equilibrium.
However, as w — +o0, 7 > % + % always holds,

consequently, system admits a unique positive equilibrium.
Fig 1-2 confirms this observation. From Figure 1 and 2,
one could see that the critical value of wind effect is w. =~ 1.

(2) Take w = 5. In this case, simple calculation shows that

25  ac eq

T:1<E_¢1(w)+¢2(w).

According to Theorem 4.1, the prey-free equilibrium
point F5(0,2) is globally asymptotically stable. Fig 3 and
4 are the time series solution of w(t) and v(t), Fig.5 is the
phase ortrait of the system (56), they all support the assertion.

(57)

Example 9.2 Let us now study the following model:

du  _ 2u(1_£)_L
dt 10 1+401x5
_ 0.2u
1+01x5 (58)

dv ( v )

= = yl1l-—.

dt u

14—0.1><5+1

Here, corresponding to system (3), we take r = 2, K =
10,a=1,e=02,q=1,s=1,=1,¢c=1, ky =0.1,
ko = 0.1, and w = 5. Note that:

P(w)=14+kw=1401x5=1.5
Po(w)=14+kaw=1+401x5=1.5
Thus, we have:

pa(w)rdr(w) =15 x2x 1.5 =45

p2(w)ac + eqor (w)

= 15x1x1402x1x1.5
1.54+03=1.8

Clearly, the following condition holds:

P2 (w)rdr(w) > po(w)ac + eqpr(w)

Therefore, the conditions of Theorem 5.1 are satisfied, and
the positive equilibrium point Es3(u*,v*) ~ (1.862,2.241)
is globally asymptotically stable. The numerical simulations
(Figures 6-9) support this conclusion. Here Fig. 6 and 7 are
the time series solution of u(t) and v(t), respectively. Fig.
8 is the phase ortrait of the system (58), Fig.9 shows the
solutions from 3D-space.

Example 9.3 Consider the following model:

du u uv 0.2u

- m41,4>, - :

dt 10 1+0.1xw 14+0.1xw

dv v

- = 1 — |

dt v( LL+1>

1+0.1xw
(59

In this context, in relation to system (3), we set r = 2,

K=10,a=1,e=02,¢g=1,s=1,=1,¢c =1,
k1 = 0.1, and k2 = 0.1. We vary w as w = 0,5, 10,1000,
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with the initial condition (x(0),v(0)) = (1,1). Figures 10,
11 and 12 illustrate the behavior of the system’s solutions
for different values of w. It can be observed that as w
increases, the value of u* also increases. When w is large
enough, u(t) — K and v(¢t) — c¢. This result is in line
with the theoretical analysis presented in Section 7.6.
Additionally, Figure 5 shows that as w increases from O to
oo, the density of the predator population first increases,
then decreases, and finally approaches c as the wind effect
becomes strong enough.

Example 9.4 Consider the following model:

d7u _ 2u(1—£) _ uv _ 0.2u
at 10 14k x5 14+kyx5’
dv v
— = 9|l —.
11k x5

(60)

Here, corresponding to system (3), we take r = 2,
K=10,a=1,e=02,¢g=1,s=1,=1,¢c =1,
and w = 5.
(1) Take ko = 0.1, then as k; varies, u* and v* also vary.
Figure 13 shows their relationship. It can be seen that u*
is a monotonically increasing function of k;, while v* first
increases monotonically and then decreases monotonically.
Finally, as k1 — +o00, v* — c. This is consistent with the
theoretical analysis in Sections 7.1 and 7.2.
(2) Take k; = 0.1, as ko varies, u* also varies. Figure
14 shows their relationship. It can be seen that u* is a
monotonically increasing function of k5. This is consistent
with the theoretical analysis in Sections 7.3 and 7.4.
(3) Both k7 and ko varies, in this case, ©* and v* also varies.
Figure 15 and 16 show the relationship among u*,v* and
ki1, ko. It can be seen that u* is a monotonically increasing
function of ki and ks.

This is consistent with the theoretical analysis in Sections
7.3 and 7.4.

Example 9.5 Consider the following model:

d7u _ u(1—£> _ 2uv _ 0.5u
dt 10 1401xw 14k xw’
dv ( v
— = 9yl —|.
dt u 1)
1+0.1><5+

(61)
Here, corresponding to system (3), we take r = 1, K = 10,
a=1,e=05,q=1,s=1,=1,¢c=1and k; = 0.1.
For the system without harvesting and wind effect,

r=11>1=ac. (62)

In this case, the system admits a unique positive equilibrium,
which is globally asymptotically stable. However, for the

system with harvesting and without wind effect,
r=11<15=ac+ eq, (63)

then, the prey species will be driven to extinction. That is,
with the human harvesting, the prey species will finally be

driven to extinction. Now, if we further incorporating the
wind effect to the system, obviously, for w enough large,
ac eq

r=11> rl(w) + 7(252(0«’)'

Then the system again admits a unique positive equilibrium
which is globally asymptotically stable. Fig. 17 and 18 show
this phenomenon. The wind effect plays a crucial role in the
long-term survival of the prey population by reducing the
intensity of human harvesting.

(64)

X. CONCLUSION AND FUTURE PERSPECTIVES

A. Theoretical Contributions

This paper breaks through the limitations of traditional
single-factor models by introducing a dual-channel wind
effect framework that simultaneously incorporates the im-
pact of wind on natural predation and human harvesting.
Specifically, we quantify the dynamic effects of wind speed
on predator search efficiency and human harvesting intensity
through the nonlinear functions ¢1(w) = 1+ kjw (predation
efficiency suppression term) and ¢ (w) = 1+kow (harvesting
intensity attenuation term). Numerical simulations validate
the following critical phenomenon:

lim u(t) = K,

Jim lim v(t) =,

w—r00

revealing that under extreme wind speeds, prey popula-
tions asymptotically approach environmental carrying capac-
ity, while predators rely on external food sources. This find-
ing highlights critical ecological phenomena under extreme
climatic conditions.

Furthermore, we establish the necessary and sufficient
condition for global asymptotic stability:

Pa(w)rdr(w) > da2(w)ac + eqor(w),

proving that the existence of a positive equilibrium directly
guarantees global convergence, thereby quantifying ecosys-
tem resilience.

B. Ecological Implications

Our study reveals the profound impact of wind speed
on population dynamics, particularly when wind speed ex-
ceeds a critical threshold (w > w.). The synergistic effects
of declining predation efficiency (0¢;/0w) and harvesting
attenuation (J¢o/0w) can break prey extinction thresholds.
This finding provides important guidance for biodiversity
conservation in climate-sensitive regions.

Additionally, we uncover parameter sensitivity rules:
predator density v* exhibits unimodal variation with wind
speed (peak density corresponds to optimal wind speed wo),
while prey density u* remains positively correlated with the
harvesting interference coefficient ko. These results offer a
theoretical foundation for defining “no-fishing wind speed
intervals” in fisheries management.
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C. Validation through Numerical Simulations

Through extensive numerical simulations, we validate the
theoretical analysis and further elucidate the specific effects
of wind speed on population dynamics. For instance, when
wind speed is low, prey populations may face extinction due
to predation pressure and human harvesting. However, as
wind speed increases, the decline in predation efficiency and
the attenuation of harvesting intensity allow prey populations
to recover and eventually approach environmental carrying
capacity. This phenomenon is particularly pronounced under
extreme wind speeds, indicating that wind plays a critical
role in ecosystem stability.

Moreover, the simulations reveal non-monotonic variation
in predator density: as wind speed increases, predator density
first increases and then decreases, eventually stabilizing at c.
This finding provides important insights for fisheries man-
agement: when formulating harvesting policies, the impact
of wind speed on both predator and prey populations must
be carefully considered to avoid ecosystem imbalance caused
by overharvesting.

D. Future Research Directions

1. Asymmetric Wind Effect Scenarios: Future research
could explore nonlinear forms of ¢;(w) and ¢2(w) (e.g.,
exponential or threshold-dependent) to investigate their bi-
furcation impacts on system dynamics.

2. Climate-Coupled Stochastic Models: Incorporating
stochastic wind fluctuations (e.g., w(t) = wo + oW, where
W, is a Wiener process) to assess ecological risks under
extreme climate events.

3. Empirical Validation: Calibrating ¢ (w) and ¢2(w)
using remote-sensing wind data and fishery statistics to verify
the biological plausibility of the model and provide more
precise guidance for real-world ecosystem management.

E. Ecological Management Recommendations

Based on our findings, we propose the following ecologi-
cal management recommendations:

1. Set Critical Wind Speed Thresholds: Use w, as the
upper limit for fishing bans in fisheries policies to protect
prey populations from overharvesting.

2. Adaptive Management: Monitor risks of population
density mutations when wind speed exceeds the optimal
value wyp¢, and adjust harvesting strategies accordingly.

3. Climate Change Adaptation: Dynamically adapt man-
agement strategies in response to long-term shifts in wind
speed distributions to mitigate the potential impacts of cli-
mate change on ecosystem stability.
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Equilibrium Point u* vs Wind Speed
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Fig. 1. The bifurcation diagram of w* with respect to w.
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Fig. 2. The bifurcation diagram of v* with respect to w.
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Extinction of u(t)

41
3
u 2
1_

0 1 2 3 4 5 6 7

Fig. 3. Time series solution u(t) of the system (56), the initial condition (u(0),v(0)) = (1,1), (2,2), (3,3), (4,4) and (0.1,0.1), respectively.
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Fig. 4. Time series solution v(t) of the system (56), the initial condition (u(0),v(0)) = (1,1), (2,2), (3,3), (4,4) and (0.1, 0.1), respectively.
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Phase Portrait of the System (56)
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Fig. 5. Phase ortrait of the system (56), the initial condition (u(0),v(0)) = (8,1), (8,2), (8,3), (8,4) and (8, 6), respectively.
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Fig. 6. Time series solution u(¢) of the system (58), the initial condition (u(0),v(0)) = (1,1), (1,5), (2,2), (3,1), (4,3) and (5, 4), respectively.
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Fig. 7. Time series solution v(¢) of the system (58), the initial condition (u(0),v(0)) = (1,1), (1,5), (2,2), (3,1), (4,3) and (5, 4), respectively.

Phase Portrait of the System
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Fig. 8. Phase portrait of the system (58), the initial condition (u(0),v(0)) = (1,1), (1,5), (2,2), (3,1), (4,3) and (5, 4), respectively.
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Fig. 9. Phase ortrait of the system (58), the initial condition (u(0),v(0)) = (1,1), (1,5), (2,2), (3,1), (4,3) and (5,4), respectively.

Prey density u(t) under different wind speeds
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Fig. 10. wu(t) corresponding to different values of w in system (59), the initial condition (u(0),v(0)) = (1,1), w = 0, 5, 10, 1000, respectively.
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Predator density u(t) under different wind speeds
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v(t) corresponding to different values of w in system (59), the initial condition (u(0),v(0)) = (1,1), w = 0, 5, 10, 1000, respectively.
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Fig. 12. 3D Plot of u(t), v(t) vs t for different values of w in system (59), the initial condition (u(0),v(0)) = (1, 1), w = 0, 5, 10, 1000, respectively.
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The variations of u™* and v** with respect to k1
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Fig. 13. The variations of u* and v* with respect to k1.

the relationship of u* and v* and k2
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Fig. 14. The variations of u* and v* with respect to k2.
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u* as a function ofkl and k2

Fig. 15. The variations of u* with respect to k1 and k2.

v* as a function ofk1 and k2

Fig. 16. The variations of v* with respect to k1 and k2.
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u"* as a function of omega and k2
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Fig. 17. The variations of u* with respect to w and ko.

v"* as a function of omega and k2
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Fig. 18. The variations of v* with respect to w and k2.
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