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Abstract—Accurate identification of objects in remote sensing
images is essential for both civilian surveillance and military
defense. The primary challenges of remote sensing object detec-
tion lie in (1) complicated environmental contexts and (2) multi-
scale object distribution, which hinder accurate recognition
and localization of objects. Although Convolutional Neural
Networks (CNN) have been extensively adopted for remote
sensing detection tasks, their performance remains constrained
by limited receptive fields and insufficient global contextual
awareness. To overcome these limitations, our study presents an
advanced ST-FSFF architecture to overcome these constraints.
Specifically, the architecture incorporates a Swin Transformer-
based backbone for comprehensive feature extraction, coupled
with our newly developed Full-Scale Feature Fusion mechanism
that optimally combines multi-level features to enhance both
semantic understanding and positional accuracy. A specialized
Region Proposal Network scans these multi-scale feature maps
to identify potential targets, followed by a detection module for
final classification and positioning. Experimental evaluations on
the MAR20, NWPU VHR-10, and RSOD benchmark datasets
demonstrate the superior performance of our method, with
accuracies of 91.5%, 94.3%, and 97.3%, respectively, which
outperform mainstream detection methods.

Index Terms—Remote sensing, Deep learning, Object detec-
tion, Swin Transformer, Feature fusion.

I. INTRODUCTION

REMOTE sensing images are a vital source of data,
playing a crucial role in both civilian and military

fields. The tasks of identifying and localizing targets in
remote sensing images demand highly accurate detection
algorithms. Recent studies highlight the dominance of Con-
volutional Neural Networks (CNN) in remote sensing object
detection, driven by their ability to model complex feature
hierarchies. Guo et al. [1] presented a CNN-based solution
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for multi-scale object detection. Their unified framework
combines features from different resolutions to handle size
variations in remote sensing data. FMSSD [2] adopted a
spatial pyramid structure with dilated convolutions arranged
in parallel. While this effectively expands the receptive
field, it significantly increases computational demands. Both
methods introduce targeted improvements for addressing the
multi-scale characteristics of RSI and achieve outstanding
performance. However, they lack consideration of the con-
textual information surrounding the targets. To tackle dense
small object detection in remote sensing imagery, Wu et
al. [3] developed BCS-YOLOv8s, an enhanced version of
YOLOv8s specifically optimized for clustered small target
scenarios. For remote sensing image analysis, Yan et al.
[4] developed a deformable R-CNN variant that adaptively
utilizes IoU information, enhancing detection performance
particularly for small objects in multi-class scenarios. Li [5]
systematically improves the YOLOv5 network architecture
by introducing a PConv-based C3-Faster lightweight mod-
ule, Ghost convolution using feature reparameterization, and
Squeeze-and-Excitation attention mechanism for systematic
lightweighting.

(a) (b) (c)

Fig. 1. Characteristics of remote sensing images (a) and (b) complex
background environments (c) scale variations.

However, background interference and scale variation
in remote sensing images make object detection highly
challenging [6]. (1) Complex background environments, as
shown in Fig. 1 (a) and (b), remote sensing images often
cover vast geographic areas, where complex scenes and
backgrounds frequently resemble the foreground, leading to
interference with foreground detection. (2) Scale variations,
as illustrated in Fig. 1 (c), and significant differences in
object scales exist within the same remote sensing scene,
making it challenging to balance the detection of objects at
varying scales.

Feature extraction efficiency is significantly enhanced in
Swin Transformer through its hierarchical structure and
shifted-window attention mechanism, which optimally mod-
els interactions between local and global feature representa-
tions. Wang et al. [7] presented a technique for integrating
CNN features into ViT, enhancing its ability to learn both
global context and local details, thereby boosting classifi-
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cation accuracy. Liang et al. [8] developed an enhanced
Swin Transformer-based framework that fuses convolutional
and attention-based features to boost the detection of small-
scale objects in cluttered remote sensing imagery. Xue et
al. [9] designed a triple change detection framework named
TCD-Net, which tackles the difficulties of change detection
in remote sensing imagery by combining multi-frequency
features with a full-scale Swin Transformer architecture. This
method enhances feature representation in dynamic regions
and enables cross-scale context modeling, thereby mitigating
the inherent shortcomings of conventional detectors when
used in remote sensing applications.

Multi-scale feature fusion empowers the model to si-
multaneously capture target characteristics across diverse
scales, thereby significantly enhancing detection accuracy
in complex backgrounds and for objects of varying sizes.
By hierarchically integrating feature representations from
multiple levels, this approach amplifies the model’s ability to
discern small targets, distant objects, and fine-grained details
through cross-resolution information propagation. Such capa-
bility ensures robust adaptability to scale variations inherent
in remote sensing scenarios. Zhang et al. [10] improved the
network’s ability to extract and characterise target features by
creating a two-layer digital semi-synthetic backbone network
structure and introducing deformable convolutions, coordi-
nate attention mechanisms and a new CAB module. Zhao et
al. [11] introduced an attention-guided fusion module within
a YOLOX-based framework, aiming to enhance contextual
perception by enlarging the receptive field across multiple
feature scales. Wang et al. [12]enhanced the GD fusion
module using a PConv-based FasterNet Block for better
spatial feature extraction, and incorporated EMA attention
to improve detection accuracy. Hou et al. [13] developed an
enhanced detection method for remote sensing imagery based
on the YOLOv9 framework. By integrating the C3, CD,
and CGA modules, the DSConvRepNCSPELAN4 module,
and the CARAFE module, the model achieves significant
performance enhancements in detecting objects under com-
plex backgrounds and multi-scale variations. Gong et al. [14]
developed SGMFNet, an innovative architecture for remote
sensing detection that synergistically combines spatial global
attention with hierarchical multi-scale feature integration.
This method effectively improves detection performance
under complex backgrounds and significant scale variation
conditions. Liu et al. [15] designed an improved detection
approach for remote sensing images that leverages attention
mechanisms and multi-scale feature integration. Built on a
refined Faster R-CNN design, the proposed method shows
improved performance in detecting small targets under com-
plex scene conditions. Zhang et al. [16] developed SGMFNet,
a self-attention-driven detection model with multi-scale fea-
ture integration, tailored to overcome background complex-
ity, scale variance, and object crowding in remote sensing
images.

Based on the observations above, we use Swin Trans-
former to extract global features and solve the issue of
complex background interference in images. Its hierarchical
design and shifted window mechanism preserve local detail
features while gradually building global feature representa-
tions. This approach overcomes the limitation of traditional
CNN with restricted receptive fields. A network architecture

based on full-scale feature fusion (FSFF) is proposed to
address the problem of significant scale differences. The
model combines features from various depths to strengthen
its capacity for representing targets at different spatial scales.
The FSFF achieves richer semantic and more precise spatial
multi-scale feature representations through a cross-scale in-
formation interaction mechanism. The design of this fusion
method is based on two main motivations: (1) Compared
to single-scale features, multi-scale features can effectively
cover targets of different sizes. Shallow-layer representations,
characterized by high-resolution feature maps and limited
receptive fields, are more effective in identifying small-scale
targets. In contrast, deeper-layer features, with coarser spatial
resolution and broader receptive coverage, are advantageous
for the recognition of large objects. Therefore, fusing multi-
scale features enables a more comprehensive detection of
objects of various sizes. (2) Shallow layers preserve precise
spatial localization yet lack high-level semantics, whereas
deeper layers encode robust semantic concepts at the cost of
reduced positional accuracy. By fusing features of different
scales, the semantic information from deep networks can
be fully utilized while preserving the spatial sensitivity of
shallow networks. This method strengthens the localization
ability of shallow features while simultaneously improving
the semantic representation of deep features, thereby signif-
icantly boosting the model’s detection performance across
targets of varying scales.

Based on the Swin Transformer and FSFF, we propose an
innovative network architecture, ST-FSFF, aimed at address-
ing the interference from cluttered environments and varying
target scales in remote sensing object detection through
an efficient feature fusion strategy. This study makes the
following contributions:

(1) In our framework, global features are obtained us-
ing the Swin Transformer backbone, which employs self-
attention to model spatial dependencies over extended image
regions. This helps address the challenge of complex back-
ground interference.

(2) The FSFF is proposed, which can efficiently integrate
target information at different scales to generate rich multi-
scale feature representations. It substantially enhances both
the precision and stability of target detection in remote
sensing imagery.

(3) Based on Swin Transformer and FSFF, we constructed
an innovative ST-FSFF network for solving the complex
background problem and target scale inconsistency problem,
which enhances the feature extraction capability of target
information.

II. RELATED WORKS

A. Traditional Object Detection Algorithms

Prior to deep learning, object detection largely utilized
manually engineered descriptors, such as Scale-Invariant
Feature Transform (SIFT) and Speeded-Up Robust Features.
These methods describe object characteristics by focusing
on localized visual descriptors within the image. The dis-
criminative features extracted from images serve as inputs
to machine learning classifiers, including support vector
machines (SVM) and random forest algorithms. For instance,
Liu et al. [17] employed the Canny algorithm for robust edge
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feature extraction, leveraging its multi-stage gradient com-
putation framework. Thereafter, the Hough transform was
applied to detect line segments, enabling the determination
of runway positions and the detection and localization of
target positions. Tao et al. [18] improved the SIFT feature
descriptor and incorporated prior knowledge to determine
the location of objects in remote sensing images. Yao et al.
[19] analyzed the limitations of existing pixel-wise methods
and used the Hough Transform to determine the presence of
potential airports. Subsequently, they extracted SIFT features
from candidate regions based on salient region detection and
classified them to determine the location of target areas.
Therefore, Xu et al. [20] constructed a ship-shaped template
set derived from the Hough Transform technique. They em-
ployed a sliding window strategy on real images to evaluate
the correlation between each candidate region and predefined
shape characteristics, enabling the identification of potential
target occurrences. Zhang et al. [21] adopted a multi-scale
sliding window strategy to produce candidate regions with
varying dimensions and aspect ratios. Visual features were
then extracted from each region, and a cascaded SVM
classifier was applied to assign confidence scores, facilitating
the identification of potential targets.

B. Deep Learning-Based Object Detection Algorithms

The proliferation of deep learning has established convo-
lutional neural networks (CNN) as a predominant paradigm
for object detection in remote sensing imagery, driving
significant research advancements in this domain. Sun et
al. [22] proposed an improvement scheme based on the
YOLOv7 model, which enhances the model’s ability to detect
specific targets by introducing a CBAM attention mechanism,
a small target detection layer, and a CoordConv module. This
architecture explicitly models three critical characteristics
of remote sensing targets: (1) non-uniform spatial distribu-
tion, (2) multi-scale presence , and (3) arbitrary orientation
variations, consequently achieving state-of-the-art detection
accuracy. Dong et al. [23] proposed a remote sensing object
detection framework based on the Receptive Field Expansion
Block (RFEB). By implementing RFEB modules on top of
the Feature Pyramid Network structure, the system gains the
ability to dynamically modify receptive fields. This adapta-
tion improves both contextual understanding and the flow of
deep semantic characteristics across different pyramid levels,
resulting in better multi-scale object detection capabilities.
Li et al. [24] designed the Adjacent Context Collaborative
Network. Detection performance for salient objects is sig-
nificantly enhanced through the integration of the Adjacent
Context Collaborative Module within the encoder-decoder
architecture, enabling more precise feature extraction and
localization. A parameter-free mask was proposed in [25] to
distinguish foreground instances from background in hierar-
chical features. The interference from complex backgrounds
is alleviated in LSKNet [26] through optimized spatial recep-
tive fields derived from prior knowledge, particularly improv-
ing small object localization. The coordinate attention in [27]
enhanced both localization and classification precision. Hu et
al. [28] developed an attention-based multi-scale network for
ship detection in complex scenes. A single-stage detection
framework was developed by Ma et al. [29], where features

of interest are enhanced through saliency-based amplification
and scale-aware associations.

C. Feature Fusion

Feature fusion integrates multi-source or cross-layer fea-
ture representations to produce enriched feature embeddings
with enhanced discriminative capabilities. This process im-
proves the model’s representational capacity, enabling it to
capture more valuable information in complex scenes or
multi-scale objects, thereby improving object detection accu-
racy and robustness. Zhao’s adaptation [30] equips YOLOX
with scale-aware attention modules that dynamically adjust
to capture both local details and global scene context. Song
et al. [31] incorporated an Adaptive Instance Normalization
block during feature fusion to enhance cross-domain adapt-
ability, significantly improving detection model robustness.
The framework further integrates an attention mechanism to
refine localization of fine-grained patterns. Effective aggre-
gation of cross-level features was achieved by Wang et al.
[32] through a novel fusion module with channel-wise atten-
tion mechanisms. Zhao et al. [33] introduced an attention-
based fusion mechanism tailored for aircraft detection, which
enhances both texture details and semantic representations
through deep integration. Chen et al. [34] developed a
fusion framework that facilitates spatial–semantic interaction
via efficient bidirectional coupling and adaptive weighting
strategies.

III. METHOD

As demonstrated in Fig. 2, We present an innovative
remote sensing image object detection network named ST-
FSFF, which consists of four main components: (1) Back-
bone network (Swin Transformer), (2) FSFF, (3) Region
Proposal Network (RPN), and (4) Detection Network. First,
the Swin Transformer receives the input image and extracts
multi-scale feature representations through a series of con-
volutional operations, effectively capturing both local and
global information within the image. Second, the FSFF mod-
ule fully integrates semantic and spatial information at differ-
ent scales, generating feature representations across various
scales. Subsequently, the RPN automatically generates high-
quality candidate regions (i.e., object-bounding boxes). The
multi-scale feature maps, enriched through feature extraction
and fusion, are fed into the RPN module. Using the Region
of Interest (RoI) Align operation, the RPN precisely extracts
candidate object regions from the feature maps and generates
the corresponding class and bounding box information. Ulti-
mately, feature maps refined via RoIAlign are input into the
detection head’s fully connected layers for classification and
box regression, resulting in final predictions. The backbone
and FSFF module are elaborated upon in the following parts.

A. Swin Transformer

To mitigate feature corruption caused by complex back-
grounds in remote sensing imagery, our framework adopts
Swin Transformer’s hierarchical attention mechanism as the
foundational feature extractor. Integrating self-attention with
hierarchical representation learning, the Swin Transformer
synergistically captures both fine-grained local patterns and
comprehensive global contexts through its shifted-window
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Fig. 2. ST-FSFF Network Architecture Diagram.

architecture. This approach expands the network’s receptive
field, enhances efficiency, and improves the capture of global
and contextual information. These improvements lead to
better object detection performance.

The Swin Transformer adopts a hierarchical architecture
consisting of four progressive stages, illustrated on the left in
Fig. 2. Initially, the RGB image is partitioned into distinct,
non-overlapping patches, which are then processed by the
patch splitting unit and mapped into embedding represen-
tations. The resulting patch embeddings are subsequently
forwarded into the Swin Transformer block to perform
feature encoding. In stages 2 through 4, the patch tokens are
initially fed into the patch merging operation, where neigh-
boring features are aggregated to produce lower-dimensional
representations before being processed by the subsequent
Swin Transformer blocks. This hierarchical design allows the
network to generate feature maps at resolutions comparable
to those of standard convolutional architectures.
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SW-MSA MLP

Layer Norm
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Fig. 3. Two Successive Swin Transformer Blocks.

Fig. 3 shows the structure of two consecutive Swin
Transformer Blocks [35]. A typical Swin Transformer Block
integrates several key components, including Layer Normal-
ization (LayerNorm), window-based and shifted window-
based multi-head self-attention mechanisms (W-MSA and
SW-MSA), residual pathways, and a multi-layer perceptron
(MLP). The shifted window mechanism serves as a piv-
otal innovation in the Swin Transformer design. The Swin

Transformer extracts features across four sequential stages.
Prior to this, the patch partition unit segments the input
image into smaller regions. At the initial stage, each patch
is linearly embedded to a 96-channel representation before
being processed by a Swin Transformer Block. From stage
two onward, the architecture incorporates patch merging
operations followed by successive Swin Transformer Blocks
to build hierarchical features.

To construct hierarchical representations, the patch merg-
ing operation reduces the spatial resolution of feature maps
while increasing the number of channels before each Swin
Transformer Block. This approach promotes multi-scale
feature modeling by condensing spatial dimensions. At
the core of Swin Transformer computations lies a multi-
head self-attention scheme, which enables the modeling of
long-range interactions by attending to spatial relationships
across positions. Within the block structure, two attention
mechanisms—window-based (W-MSA) and shifted-window
(SW-MSA)—are alternated between layers. W-MSA limits
the attention scope to fixed, non-overlapping windows, reduc-
ing computational cost, while SW-MSA introduces relative
spatial shifts between adjacent windows to facilitate inter-
window information exchange. In contrast, traditional global
attention mechanisms, like MSA, process the entire image
but incur higher computational overhead. Through this hi-
erarchical and localized attention design, Swin Transformer
enhances its capacity to encode contextual dependencies
effectively.

Leveraging the window partitioning strategy, the feature
transformation between adjacent Swin Transformer Blocks
(layer l to l + 1) follows:

ẑl = W −MSA(LN(zl−1)) + zl−1, (1)
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zl = MLP (LN(ẑl)) + ẑl, (2)

ẑl+1 = SW −MSA(LN(zl)) + zl, (3)

zl+1 = MLP (LN(ẑl+1)) + ẑl+1. (4)

where zl represents the output of the MLP and ẑl denotes
the output features of the W-MSA module.

In this mechanism, attention is calculated only within
each window and not across windows. The formulas for
computing attention scores in W-MSA and SW-MSA are as
follows:

Attention(Q,K, V ) = softmax(
QKT

√
dK

)V. (5)

where Q, K, and V represent the query, key, and value
matrices, respectively. These matrices are obtained through
linear transformations of the input matrix after the Layer-
Norm layer, and all three have a dimension of dk.

This study adopts the Swin Transformer architecture,
which is divided into four stages comprising a total of 12
Swin Transformer blocks. The number of blocks in stages 1
to 4 is 2, 2, 6, and 2, respectively.

B. Full-Scale Feature Fusion

In deep learning approaches, multi-scale features are typ-
ically employed to capture objects of varying scales. Low-
resolution features are more sensitive to larger objects, while
high-resolution features are more effective for smaller ones.
Therefore, constructing multi-scale feature representations is
crucial.

To address the challenge of cross-scale defect charac-
terization, we introduce Full-Scale Feature Fusion (FSFF),
a computationally efficient architecture that hierarchically
combines defect signatures across multiple magnification
levels. As shown in Fig. 2, FSFF can be divided into three
steps. First, remote sensing images of size H × W × C
are input into the ST-FSFF network to generate multi-scale
feature maps {yi, i = 2, 3, 4, 5}, where yi represents the
feature map generated by stage i, and i denotes the stage
index.

Second, multi-scale feature fusion fully exchanges feature
information at different scales. We take the calculation of the
fused feature y′3 as an example. The input is composed of
four feature maps {yi}5i=2, and the output y′3 is the sum of
the four input features after transformation. Among them, it
y2 undergoes a two-fold down-sampling operation, reducing
the scale and increasing the channel dimension to ensure
that its scale and channel dimension are the same as those
of f3. y3 is processed by a Conv module, which includes a
1×1 convolution, batch normalization, and a ReLU activation
function. For y4 and y5, the network uses two-fold and
four-fold up-sampling operations, respectively, to enlarge and
compress the channel dimension. Then, the four processed
feature maps are concatenated to obtain the fused feature y′3.
Similar to the calculation of y′3, the calculations of y′2, y′4,
and y′5 can be easily deduced formally:
y′2 = C(y2) + Up(y3) + Up(y4) + Up(y5),

y′3 = C(y3) +Down(y2) + Up(y4) + Up(y5),

y′4 = C(y4) +Down(y2) +Down(y3) + Up(y5),

y′5 = C(y5) +Down(y2) +Down(y3) +Down(y4).

(6)

where C(·), Up(·), Down(·) represent the convolution op-
eration, the up-sampling operation, and the down-sampling
operation, respectively.

Finally, the FSFF applies the Conv operation to obtain
multi-scale feature representations {fi}5i=2, formally:

fi = C(y′i), i = 2, 3, 4, 5. (7)

IV. EXPERIMENTS

This section outlines the experimental configuration, cov-
ering the datasets involved, assessment indicators, and techni-
cal implementation specifics. We then discuss the evaluation
criteria for the object detection and classification tasks in this
study, analyzing the training and testing results of the model
using these metrics.

A. Datasets

In our experimental analysis, we adopt three widely rec-
ognized datasets: MAR20, NWPU VHR-10, and RSOD. The
MAR20 dataset is a comprehensive benchmark tailored for
military aircraft recognition in high-resolution remote sens-
ing imagery. It comprises 3,842 images (800 × 800 pixels)
gathered from 60 military airport locations distributed across
countries such as the United States and Russia. Sourced via
Google Earth, it includes 22,341 annotated objects catego-
rized into 20 distinct aircraft classes, such as SU-35, C-130,
and TU-160, labeled from A1 to A20. The NWPU VHR-
10 dataset is a widely used public benchmark for object
detection in the remote sensing domain. It provides 800 high-
resolution optical images containing 10 categories of every-
day objects, including airplane (A), baseball diamond (BD),
basketball court (BC), bridge (B), ground track field (GTF),
harbor (H), ship (S), storage tank (ST), tennis court (TC)
and vehicle (V). Meanwhile, the RSOD dataset, published
by Wuhan University in 2017, contains 976 labeled remote
sensing images obtained from Google Earth and Skymap. It
covers four major object types: aircraft, oil tanks, overpasses,
and playgrounds, encompassing a total of 6,950 annotated
targets. The three datasets with diverse scenes and varying
target scales and background complexity provide challenging
test environments for the algorithms.

To partition the data, we adhered to the standard split
scheme defined by each dataset. Specifically, 70% of the
images were allocated for model training to enable com-
prehensive feature learning across varied scenarios. Another
20% were assigned for testing, facilitating a robust evaluation
of the model’s generalization ability. The remaining 10%
were utilized for validation purposes, allowing for perfor-
mance monitoring and fine-tuning during training to mitigate
overfitting and optimize learning.

B. Evaluation Metrics and Experimental Setup

In object detection, objects in an image may vary in
location and category. This requires evaluating both the
classification and localization performance of the model.
Standard evaluation metrics for image classification are not
directly applicable to object detection tasks. Thus, we employ
the mean Average Precision (mAP), a widely accepted metric
in object detection. The evaluation includes precision (P),
which quantifies the fraction of correct positive detections,
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TABLE I
MAR20 DATASET PERFORMANCE EVALUATION

Methods A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 mAp

Yolov5 85.4% 81.5% 87.6% 78.3% 80.5% 90.5% 90.2% 87.5% 87.9% 90.8% 85.8% 89.2% 67.2% 88.2% 47.8% 89.1% 90.5% 74.5% 81.3% 80.0% 82.7%
Yolov7[36] 85.8% 81.5% 86.8% 76.3% 72.2% 89.9% 89.8% 89.4% 89.1% 90.7% 86.2% 87.4% 64.9% 88.3% 47.0% 87.8% 90.4% 64.9% 83.9% 76.8% 81.5%
Yolov8 86.1% 81.7% 88.1% 69.6% 75.6% 89.9% 90.5% 89.5% 89.8% 90.9% 87.6% 88.4% 67.5% 88.5% 46.3% 88.2% 90.5% 70.5% 78.7% 80.2% 81.9%
Yolov10 85.0% 83.6% 87.4% 70.6% 79.6% 90.6% 89.7% 89.8% 90.4% 90.8% 85.5% 88.1% 68.4% 88.3% 42.4% 88.9% 90.5% 62.3% 78.2% 77.7% 81.4%
Yolov11 86.3% 80.8% 88.9% 82.5% 76.0% 90.1% 89.8% 87.3% 89.2% 90.8% 84.3% 86.2% 65.7% 87.4% 44.1% 87.5% 90.3% 56.4% 82.8% 76.7% 81.2%
DINO[37] 87.0% 82.0% 88.5% 70.0% 76.0% 90.2% 90.5% 87.0% 88.5% 90.7% 88.0% 88.5% 68.0% 89.0% 48.0% 88.5% 90.3% 70.0% 79.0% 81.0% 82.0%
Faster-RCNN 85.5% 82.2% 87.0% 78.0% 80.0% 90.3% 90.1% 89.0% 87.5% 90.6% 85.0% 89.0% 67.0% 88.0% 47.5% 89.0% 90.2% 73.0% 81.5% 80.5% 82.5%
ST-FSFF (ours) 86.2% 90.2% 94.9% 95.7% 86.6% 95.7% 92.1% 93.9% 94.4% 99.2% 89.8% 87.8% 76.4% 96.1% 86.6% 97.5% 98.0% 92.1% 86.2% 90.0% 91.5%

TABLE II
NWPU VHR-10 DATASET PERFORMANCE EVALUATION

Methods A BD BC B GTE H S ST TC V mAp

Yolov5 16.9% 65.6% 56.5% 72.8% 57.7% 41.5% 60.2% 84.4% 2.3% 91.7% 54.9%
Yolov7[36] 35.4% 58.6% 65.8% 83.6% 60.4% 51.4% 56.8% 83.4% 3.4% 95.8% 59.7%
Yolov8 27.4% 55.6% 63.8% 83.0% 62.4% 40.4% 55.8% 85.4% 3.0% 95.2% 57.2%
Yolov10 53.6% 66.6% 88.1% 72.4% 70.5% 40.1% 62.6% 84.2% 2.1% 93.2% 63.4%
Yolov11 52.2% 91.0% 92.9% 90.7% 84.3% 44.1% 67.5% 91.9% 3.5% 95% 71.3%
DINO[37] 97.5% 96.4% 88.2% 94.6% 99.9% 91.0% 86.9% 92.7% 86.8% 82.5% 91.7%
Faster-RCNN 93.5% 96.1% 85.3% 80.8% 96.8% 91.0% 85.0% 84.3% 95.4% 94.4% 90.3%
ST-FSFF (ours) 99.9% 98.8% 95.2% 87.7% 99.9% 98.7% 89.0% 85.0% 93.0% 96.2% 94.3%

TABLE III
RSOD DATASET PERFORMANCE EVALUATION

Methods aircraft oil tank overpass playground mAP

Yolov5 70.8% 90.2% 78.7% 98.1% 84.5%
Yolov7[36] 71.7% 90.3% 81.0% 99.8% 85.7%
Yolov8 76.1% 90.3% 81.3% 98.8% 86.6%
Yolov10 80.3% 89.6% 88.7% 99.1% 89.4%
Yolov11 94.5% 96.0% 84.6% 92.5% 91.9%
DINO[37] 95.4% 95.8% 74.9% 83.2% 87.3%
Faster R - CNN 95.7% 97.7% 90.1% 95.1% 94.7%
ST - FSFF (ours) 96.7% 99.4% 93.6% 99.4% 97.3%

and recall (R), indicating the proportion of actual positives
correctly retrieved. These values are computed using true
positives (TP), false positives (FP), and false negatives (FN),
based on validation and test results. A TP refers to a
prediction that overlaps sufficiently with a ground truth box.
FP arises when a predicted box exists where no ground
truth is present, while FN indicates missed detections of
actual objects. The equations for these evaluation metrics
are presented as follows:

P =
TP

TP + FP
, (8)

R =
TP

TP + FN
, (9)

AP =

∫ 1

0

P (R)d(R), (10)

mAP =

∑n
i=1 APi

n
. (11)

C. Comparative Experiments

To assess its capabilities, our method is evaluated in
comparison with cutting-edge deep learning algorithms. Ex-
periments were conducted on the MAR20, NWPU VHR-10,
and RSOD datasets, and the results are presented in Table
I-Table III.

As shown in Table I, our method achieves a mAP of
91.5%, surpassing all baseline methods by a significant
margin (e.g., +8.8% over YOLOv5 and +9.0% over Faster R-
CNN). The results substantiate ST-FSFF’s overall advantage
in processing varied object categories and complex scenes,

exhibiting significantly superior performance over compar-
ative models across most categories (particularly A3-A11
and A13-A20). Slightly lower than the DINO method in
categories A1 and A12. The reason is that these targets
usually have obvious local saliency and more homogeneous
background structure, which is suitable for recognition by lo-
cal feature-dominated detection methods based on the dense
anchor frame strategy (e.g., DINO). In contrast, ST-FSFF
places greater emphasis on enhancing feature representation
through multi-scale semantic fusion and contextual mod-
eling, demonstrating superior performance when handling
complex scenes and multi-scale objects. This demonstrates
the overall superiority of ST-FSFF in handling diverse object
categories and complex scenes. ST-FSFF exhibits remarkable
improvements in detecting objects under occlusion and in
small-scale scenarios. For instance, it attains 99.2% on A10
(occluded objects) and 89.8% on A11 (small objects). These
results provide empirical evidence that validates the efficacy
of the proposed methodology. The ST-FSFF framework
employs a Swin Transformer backbone. It utilizes sliding
window self-attention (SW-MSA) mechanism. This approach
maintains local structural features while enhancing global
context modeling. Consequently, it effectively reduces inter-
ference from cluttered environments on object recognition
accuracy.

Table II summarizes the detection performance on the
NWPU-VHR-10 dataset. Comparative experiments demon-
strate our method’s superior performance over YOLO-series
approaches, particularly in complex backgrounds. For heav-
ily occluded targets, the proposed approach achieves detec-
tion accuracies of 98.7% (H) and 89.0% (S), outperforming
all baseline methods. The best results were not achieved on
B, ST, or TC. Traditional detectors based on convolutional
structures (e.g., Faster-RCNN) have a natural advantage in
effectively extracting high-frequency information, such as
edges and textures, from ST and TC, which have regular tar-
get contours, clear shapes, and less background interference.
Notably, the accuracy gap on category B is minimal, sug-
gesting that ST-FSFF effectively represents and discriminates
targets with medium structural complexity. Additionally, all
of the methods presented in this paper outperform other
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Fig. 4. Multiple methods’ mAP comparison on the MAR20 dataset.
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Fig. 5. Multiple methods’ mAP comparison on the NWPU VHR-10 dataset.

methods, demonstrating their stability in detecting targets in
complex remote sensing scenes.

Table III presents the quantitative results on the RSOD
dataset, where our approach achieves a 97.3% mAP, out-
performing all other comparison methods. Among them,
Faster R-CNN achieves 94.3% mAP, DINO achieves 87.3%
mAP, and the latest YOLOv11 achieves 91.9%, which are
all lower than our method. The method in this paper is
only 0.4% lower than Yolov7 in the paly ground category,
a phenomenon that stems from differences in the design
of the model structure. YOLOv7 excels at detecting targets
with consistent appearance and limited morphological vari-
ations, leveraging high-resolution feature preservation and
specialized anchor optimization strategies. In contrast, ST-
FSFF incorporates global attention mechanisms with multi-
scale feature fusion to significantly improve adaptability and

robustness in complex scenarios.
To further demonstrate the performance trend of each

model during training, we added curves to Fig. 4-Fig. 6
representing the variation in mAP for each comparison model
on the three datasets, respectively. The variation curves
offer more intuitive insights into the training dynamics and
stability of each model than the tables, which only report the
final accuracy.

To improve readability and avoid curve overlap and visual
clutter caused by excessive data points, we used an equal-
interval sampling strategy for visualisation. Specifically, we
selected representative data points from the full training
log every 25 epochs and kept the final results at the end
of training. This approach strikes a balance between pre-
senting performance trends in full and ensuring graphical
distinguishability. Most object detection models (e.g., two-
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Fig. 6. Multiple methods’ mAP comparison on the RSOD dataset.

stage methods) converge within 50 epochs. However, we
trained all models for 200 epochs to ensure fair perfor-
mance comparison. This avoids incomplete evaluation from
early stopping and guarantees consistent comparison under
equal training epochs. The figure clearly demonstrates that
our proposed ST-FSFF model achieves significantly faster
convergence than conventional methods across all datasets.
Quantitatively, ST-FSFF attains superior final mAP values on
all benchmark datasets. These consistent results substantiate
that our approach surpasses state-of-the-art detection models
in terms of both precision and training efficiency.

For comparative visualization of detection performance,
representative samples from all three datasets were selected
to illustrate the outputs of different algorithms, with results
depicted in Fig. 7-Fig. 9. The visualization results demon-
strate that ST-FSFF achieves higher detection accuracy, ef-
fectively reducing false positives and missed detections. ST-
FSFF provides more precise object localization and clearer
boundary identification. These visualization results are con-
sistent with the quantitative analyses in Table I - Table III,
further demonstrating the advantages of ST-FSFF in remote
sensing target detection tasks.

D. Ablation Experiments

We conducted systematic module evaluation by progres-
sively integrating the Swin Transformer and FSFF compo-
nents into the Faster R-CNN baseline. The ablation study
results on the MAR20, NWPU VHR-10, and RSOD datasets
are presented in Table IV-Table VI, respectively.

The results of the ablation experiments show that the
synergy between Swin Transformer and FSFF module sig-
nificantly improves the model performance.On the three
datasets of MAR20, NWPU VHR-10 and RSOD, there
are obvious limitations in P, R and mAP metrics when
using Swin Transformer or FSFF alone. Relying on Swin
Transformer alone is difficult to effectively handle multi-
scale targets, while FSFF alone is susceptible to complex

TABLE IV
ABLATION EXPERIMENTS WITH MAR20

Metrics

Swin
Transformer FSFF P R mAP

✓ 86.0% 86.3% 87.9%
✓ 86.4% 87.6% 89.4%

✓ ✓ 89.6% 90.3% 91.5%

TABLE V
ABLATION EXPERIMENTS WITH NWPU VHR-10

Metrics

Swin
Transformer FSFF P R mAP

✓ 87.8% 88.4% 91.9%
✓ 88.4% 86.1% 92.6%

✓ ✓ 89.6% 90.3% 94.3%

TABLE VI
ABLATION EXPERIMENTS WITH RSOD

Metrics

Swin
Transformer FSFF P R mAP

✓ 89.2% 88.5% 92.2%
✓ 88.9% 87% 94.1%

✓ ✓ 93.4% 91.3% 97.3%

background interference due to the lack of global semantic
understanding.

From the perspective of PR curve differences in Fig.
10-Fig. 12, the combined “Swin Transformer + FSFF”
curve consistently approaches the top-right corner on both
MAR20 and RSOD datasets, strongly validating the synergis-
tic model’s advantage in achieving optimal balance between
high recall and high precision. For the NWPU VHR-10
dataset, Fig. 11 shows that while the “Swin Transformer
+ FSFF (red curve)” and “FSFF” (blue curve) achieve
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Fig. 7. Representative detection results on the MAR20 dataset using three selected methods: (a) YOLOv5, (b) Faster R-CNN, and (c) the proposed
ST-FSFF.
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Fig. 8. Representative detection results on the NWPU VHR-10 dataset using three selected models: (a) DINO, (b) Faster R-CNN, and (c) the proposed
ST-FSFF.

comparable performance in certain intervals (R = 0.5-0.9),
the red curve demonstrates significantly higher precision than
the blue curve in the critical high-recall region (R > 0.9).
This clearly validates the advantage of the global attention
mechanism in high-recall scenarios.

Analysis of the mAP curves (Fig. 13-Fig.15) demonstrates
that integrating Swin Transformer with FSFF achieves more
comprehensive feature representation. Swin Transformer es-
tablishes a robust global semantic foundation, while FSFF
supplements multi-scale spatial details. This synergistic com-
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0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Swin Transformer+FSFF
Swin Transformer
FSFF

Fig. 10. PR curves comparison for module ablation study on MAR20
dataset.

bination yields substantial mAP improvements: from 89.4%
to 91.5% on MAR20, 92.6% to 94.3% on NWPU VHR-
10, and 94.1% to 97.3% on RSOD. Moreover, the model
demonstrates faster convergence and superior precision-recall
trade-offs. These results thoroughly validate the scientific
rationale and necessity of the dual-module collaboration in
ST-FSFF network design.

V. CONCLUSION

This paper proposes ST-FSFF, a novel two-stage frame-
work for object detection in remote sensing images. ST-FSFF
integrates several key components to enhance performance.
Firstly, the introduction of the Swin Transformer captures
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Fig. 11. PR curves comparison for module ablation study on NWPU VHR-
10 dataset.

spatial and frequency domain features while extracting re-
mote dependency features with global semantics. This effec-
tively suppresses the interference from complex backgrounds
in remote sensing images, providing more discriminative
features for subsequent tasks. Secondly, to address the issue
of varying object scales, the FSFF method is proposed.
Empirical analysis based on multiple remote sensing bench-
marks confirms both the robustness of our approach and
its superior performance compared to recent state-of-the-art
methods.
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