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Abstract—This study introduces an enhanced Damped Least
Squares (DLS) algorithm featuring adaptive damping coeffi-
cient selection to overcome motion control limitations in robotic
manipulators operating near singular configurations. Conven-
tional DLS methods face persistent difficulties in maintain-
ing an optimal balance between trajectory tracking precision
and velocity continuity at singular regions, often resulting in
performance degradation during critical operational phases.
Our innovative solution incorporates two key advancements:
1) real-time adjustment of damping parameters through joint
velocity differential analysis, and 2) systematic integration of a
nonlinear Particle Swarm Optimization (NPSO) technique for
comprehensive performance enhancement. Comparative simu-
lations and physical experiments validate the proposed method’s
superior capability in both accuracy and robustness. This
developed control framework introduces a novel methodology
for maintaining manipulator stability during operation within
singular configuration zones.

Index Terms—Singularity configuration, Extended damped
least squares, Nonlinear particle swarm optimization, Hydraulic
manipulator

I. INTRODUCTION

S a fundamental component within the domain of

intelligent manufacturing, manipulators have consis-
tently intrigued researchers globally. Conventional articulated
manipulators frequently encounter distinctive configuration
issues arising from their mechanical design and kinematic
structure. These challenges materialize as singular configu-
rations, where specific joint configurations lead to restricted
or unpredictable motion behaviors [1]. Singularities can arise
due to various factors, such as joint limitations, restrictions
in the workspace, or complex task demands [2]. Navigating
effectively these unique configurations presents an obstacle
for manipulator control systems. Conventional methods often
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struggle to manage motion near singularities, leading to de-
graded performance, tracking errors, or even potential system
instability [3]. Consequently, scholars and practitioners are
constantly exploring innovative strategies to address these
obstacles and improve the resilience and adaptability of
articulated manipulators.

The hydraulic manipulator employed in this study is a
serial-type mechanism comprising hydraulic cylinder and hy-
draulic swing cylinder. Owing to its mechanical structure and
operating conditions, this type of manipulator is particularly
prone to encountering structural singularities Additionally,
sudden changes in joint velocity can lead to fluctuations in
hydraulic pressure. The high power and torque output of
hydraulic manipulators can pose significant safety risks when
velocities become uncontrollable. Therefore, addressing the
singularity issues of hydraulic manipulators is crucial to
ensuree and efficient operation. In Fig. 1, the singularity
problem is evident in the fact that within the singular region
adjacent to the manipulator, even a slight movement of the
end effector can result in infinite joint angular velocity [5].
The singularity configuration occurs when the 4-th joint and
the 6-th joint are collinear. A common strategy for mitigating
such singularities involves avoiding these configurations alto-
gether, typically through careful path planning and deliberate
structural design.

Rotary Hydraulic Cylinder
Wrist singular configuration

4-th Joint

3-th Joint

2-th Joint 6-th Joint
Liner
Hydraulic
1-th Joint Cylinder

Fig. 1. Singular configuration of manipulator

The field of robotics is intricately linked to the concepts of
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robot Inverse Kinematics (IK) and singularities. Singularities
are specific points in a robot’s IK where it undergoes a
reduction in degrees of freedom. This reduction leads to
situations where the kinematic solution becomes ambiguous
or impractical, thereby complicating the robot’s motion plan-
ning and control processes. In the pursuit of enhancing per-
formance, researchers and scholars have extensively explored
and suggested various optimization strategies to address
the singularity issue in manipulators. Nakamura et al. [5]
introduced a manipulability index based on Jacobian matrix
to quantify the proximity to singular configurations of manip-
ulators. However, this index has limitations in accuracy when
dealing with complex systems. Wampler et al. [6] proposed
damped least square (DLS) method by combining Jacobian
matrix pseudo-inverse with the least square method, which
compromises the accuracy of inverse solutions near singular
configurations to enhance the stability of manipulator motion.
Wampler method employs a constant damping coefficient,
resulting in redundant damping in the nonsingular region.
Maciejewski et al. [7] incorporated the minimum singular
value into DLS method to ensure stable solutions. Le Minh
Phuoc et al. [8] determined the damping coefficient based
on a Gaussian DLS (G-DLS), and simulations illustrated the
achievement of continuous joint velocity in the vicinity of
the singular region. Samuel et al. [9] proposed a Selective
DLS (SDLS) approach based on the relationship between the
end-effector position and the target position, considering each
joint’s effect on the relative end position individually. The
computation of singular vectors requires high controller com-
putational performance. In [10], an extended DLS combined
with compensation was used to prevent dynamic singularities
in space robotics, which can gradually reduce or eliminate
errors. The selection of parameters impacts the algorithm’s
effectiveness. Inappropriate parameter values, either too large
or too small, can result in poor results, rendering parameter
selection a challenging task.

Advanced algorithms for optimizing parameters have been
extensively studied, with techniques such as Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA) being
prominent in the research. PSO, in particular, has experienced
significant developments due to its efficient global search
capabilities and parallel processing functionalities. Its appli-
cations span across various domains, including object opti-
mization and parameter identification. To address challenges
such as local optimization and convergence time, several
enhanced PSO algorithms and GA have been introduced.
In [10], a chaotic particle swarm was utilized to optimize
the trajectory of a space robot, addressing the premature
convergence issue of PSO. In [11], the combination of
nonlinear PSO (NPSO) with kernel-based extreme learning
machine (KELM) model enhanced location optimization
tasks. Furthermore, Alhussein M et al. [12] incorporated
particle velocity clamping and penalizing principles to boost
the performance of the standard PSO. Similarly, Phuoc et
al. [8] employed a GA to optimize Gaussian distribution
parameters, validated through simulation experiments. Kalra
et al. [13] proposed a single-level real-coded GA for mul-
timodal manipulators, evaluating positional error and total
joint displacement in the fitness function. Tabandeh et al.
[14] introduced an adaptive niches and clustering-based GA
to minimize joint angles and reduce end-effector positioning

errors. Deb et al. [15] utilized a niche strategy and Taguchi-
GA (TGA) [16] to optimize predefined functions within
the artificial immune system and enhance joint angle com-
putational results. Furthermore, improvements in precision
and computational efficiency are attained by integrating
techniques such as neural network ensemble models [17]
extreme learning machines [18], and deep neural networks
[19]. These methodologies detect residual errors in industrial
robots [21], predict increment coefficients for DLS [20], and
determine optimal neural network configurations for multi-
joint robots [22]. In conclusion, advanced optimization algo-
rithms, coupled with innovative approaches such as neural
networks, play a vital role in enhancing the performance
and stability of manipulators across diverse applications.
However, one of the assumptions in these adaptive strategies
is that the parameter damping coefficient remains constant
with the joint velocity, potentially rendering the damping
redundant and affecting tracking performance deviation.

To address the aforementioned challenges, this work pro-
poses an extended DLS method featuring adaptive damping
coefficient selection for motion control of manipulators op-
erating under singular configurations. The key contributions
of this study are outlined as follows:

1) The Denavit-Hartenberg (D-H) model is employed
to establish the serial hydraulic manipulator’s kine-
matic model, incorporating systematic identification of
configuration-dependent singularities through Jacobian
matrix singularity analysis.

2) A novel damping coefficient adaptation mechanism is
developed, dynamically integrating joint velocity dif-
ferentials with nonlinear particle swarm optimization
(NPSO) to mitigate discontinuous velocity transitions
near singular configurations.

3) Comprehensive validation through numerical simula-
tions and physical experiments confirms the proposed
method’s efficacy in suppressing velocity discontinu-
ities while maintaining enhanced trajectory tracking
accuracy compared to conventional DLS approaches.

The paper is structured as follows: Section 2 introduces
D-H model of the hydraulic manipulator and analyzes typ-
ical singular configurations. Section 3 outlines a method
for calculating the damping coefficient using the velocity
change rate (V-DLS). V-DLS algorithm parameters proposed
in Section 4 are optimized using NPSO algorithm. Section
5 conducts simulations and experiments to validate the
effectiveness of the proposed algorithm for velocity muta-
tion suppression and reasonable damping allocation, Finally,
Section 6 presents the conclusions.

1I. KINEMATIC MODELING AND SINGULARITY ANALYSIS
A. Forward kinematics analysis

The research focuses on a six-degree-of-freedom (DOF)
hydraulic manipulator, excluding external environmental fac-
tors such as friction, gravity, and disturbances, as depicted in
Fig. 2. The manipulator comprises a base platform, a link-
age mechanism, and six hydraulic actuators. The hydraulic
actuators consist of linear piston cylinders and rotary swing
cylinders, as illustrated in Fig. 2 (a) .

This section focuses on establishing forward kinematics
using the Standard D-H method. In accordance with the right-
hand rule, a coordinate system is defined for the connecting
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(b) Link coordinate system of hydraulic manipulator

Fig. 2. Mechanical structure and coordinate system of hydraulic manipulator

rod by taking the connection point of each joint as the circle’s
center (Fig. 2 (b)). Z-axis is assigned as the direction of the
rotation axis of the connecting rod, while X-axis is oriented
to the right (indicating the forward movement of the robotic
arm), and Y-axis is determined following the right-hand rule.
D-H parameters resulting from this model are summarized
in Table I.

TABLE I
D-H MODEL PARAMETERS

Link Joint Link Link Torsion Range
off-set length angle

1 p1 291.7 0 90° [—90°,90°]

2 P2 0 780 0° [—165°,0°]

3 p3 0 120 90° [—40°,70°]

4 P4 505.7 0 —90° [—90°,90°]

5 vs 0 0 90° [=70°,70°]

6 v6 308.7 0 0° [—180°,180°]

B. Singular configuration analysis

When addressing the operation of robotic manipulators,
particularly in the proximity of a singular configuration,
inherent challenges arise due to the mathematical charac-
teristics of the inverse solution. Specifically, in situations
where the manipulator is in close proximity to a singularity,
even a minor displacement of the end-effector can lead

to exceedingly high joint angular velocities. Assuming the
reversibility of J, the expression for the joint velocity is
derived using (1):

G=J'WW=J1% (1)

This occurrence is predominantly attributed to the at-
tributes of J and its inverse. The difficulties presented
by singular configurations in robotic manipulators can be
effectively examined and comprehended through the appli-
cation of singular value decomposition (SVD) to J. This
mathematical technique offers a comprehensive insight into
the behavior of J in the vicinity of singularities. .JJ can be
decomposed utilizing SVD as follows [28]:

q= ZafluiuiT 2)
i—1 m

T =US"TWVT =3 o viu] 3)
i—1

When the singular values of J tend towards zero, the
joint velocities tend towards infinity. This scenario signifies
that the manipulator is in proximity to a singular configu-
ration. In such instances, J becomes nearly non-invertible,
suggesting potential control and stability challenges for the
robotic manipulator. A wrist singular configuration arises
when specific joints of the manipulator align in a manner
that results in J losing rank. In particular, when the 4-th joint
aligns collinearly with the 6-th joint, the respective columns
in J become linearly dependent (Fig. 3(a)).

2 4th and 6th joints are colinear
1
Base —» =Y
-1
ixari

(a) Wrist singular configuration

Joint Velocity of 4-th Joint at 0.015m/s

400F
o~ = VelocityCmd
o VelocityActual
E’ 200F ‘\P -
(2]
= Singular Position
s A \ Y
G
=200 1
14 15 16 17 18

Time(s)
(b) 4-th Joint velocity mutation at 0.015m/s

Fig. 3. Singular configuration of joint
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Fig. 4. Flow diagram of V-DLS

The joint velocity curves without processing the singular
configuration are depicted in Fig. 3(b) reveals that the 4-
th joint velocity undergoes a sudden change, or mutation,
in the proximity of the singular configuration, reaching
approximately 200°/s. This abrupt alteration has the po-
tential to significantly disrupt the hydraulic system’s perfor-
mance, leading to significant mechanical stress, instability,
and possible damage to system components. The spike in
velocity highlights the critical need for the implementation
of strategies to handle and prevent singular configurations
to uphold the optimal performance and reliability of the
hydraulic manipulator.

III. DLS BASED ON JOINT VELOCITY CHANGE RATE

To mitigate premature convergence, various studies have
been undertaken to address this issue. DLS is commonly
utilized to handle singular configuration problems in indus-
trial robotics. The typical approach includes incorporating a
damping parameter into SVD of J to create a pseudo-inverse,
which helps in limiting sudden fluctuations in joint angular
velocity while compromising tracking accuracy [29].

The pseudo-inverse of a matrix J¥ is a generalization
of the matrix inverse for non-square matrices or matrices
that do not have full rank. For J, its pseudo-inverse can be
mathematically defined as follows [30]:

JP = (JJh gt “4)

Remark 1. The form specified in Eq. (4) is recognized as
Moore-Penrose pseudo-inverse of J. Moore-Penrose pseudo-
inverse is applicable when J possesses full column rank. In
cases where J does not have full column rank (e.g., due to
redundant or linearly dependent columns), it is necessary to
preprocess J appropriately or resort to alternative general-
ized inverse techniques.

To address the aforementioned issues, an extended pseudo-
inverse is suggested, commonly referred to as the pseudo-
inverse with a damping factor or Tikhonov regularized

T T Caie 1| obian Marix
I velocity changd | diagram |

I} index | | Desire velocity | |

| | I | Command |

I ) | : I

Py v |

_|A_:> 1o A »| Jacobian matrix | |
| = v |

| | I || Modfied Velocity I

JI | JI | Command :
1 | I |

| : Manipulator | |

pseudo-inverse. This approach aims to mitigate numerical
instability and enhance the system’s robustness. The pseudo-
inverse with a damping factor can be represented as follows
[31],

®)

where J represents the original Jacobian matrix; A represents
the damping factor or regularization parameter; I represents
an identity matrix of the same size as J7J; and JT repre-
sents the pseudo-inverse in form of DLS.

Jt = (I + 20"t

Remark 2. When the orientation of the joint angular velocity
z aligns with Z-axis, employing the pseudo-inverse J* with
a damping factor can address issues arising from singular
configurations. This approach enhances numerical stability,
ensuring effective control over joint angular velocity and
force transmission even in singular configurations. By uti-
lizing J and the pseudo-inverse with a damping factor, the
robot’s motion and mechanical capabilities can be more ef-
fectively regulated and controlled in singular configurations.

By substituting Eq. (5) into Eq. (1), the expression for the
joint velocity is obtained as follows:
G=JT(JJT + 220" T 6)
The conventional DLS technique utilizes a fixed damping
coefficient, which may lead to superfluous errors in the
trajectory tracking of the manipulator. Recognizing that a
different feature of a singular configuration is the sudden
alteration in velocity, this study introduces an enhanced DLS
approach that determines a suitable damping coefficient A by
considering the rate of change in joint velocity. Based on the
aforementioned analysis, it is identified that the 4-th and 6-
th joints predominantly contribute to the velocity variation
at the wrist singularity. Therefore, the coefficient A\ can be
calculated by examining the velocities of these two joints.
As the manipulator nears singularity, an increased damping
coefficient is essential due to the velocity variation, which
is represented as an exponential function. Consequently, A is
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adjusted to adhere to this exponential progression.
A = /(ga(k) = da(k = 1))? + (g (k) — ds(k —1))> (7)
A= )\mawe_(eiA) (8)

where A represents the index of joint velocity change rate; gy
and gg represent the joint velocities; k represents the k step
of the motion process. \,,q; represents the upper limitation
of damping coefficient which determines the range of A.

Remark 3. If Ao is excessively large, it will lead to
a disproportionately high average value of )\, resulting in
significant tracking errors. Conversely, if \ is too small, it
will diminish the damping effect of the algorithm. Therefore,
Amaz 1S pivotal in determining the control performance of
the manipulator.

Fig. 4 illustrates the flow diagram of V-DLS, delineated
into four main components. Initially, the sensor records the
joint velocities at steps k and k — 1. Subsequently, the
algorithm computes the velocity change index A and adjusts
A. Amaz 18 established through iterative testing. Following
this, the revised A is integrated into J. Ultimately, the
adjusted velocity command is obtained.

Remark 4. The A4, is determined through a trial-and-
error process, which may lead to challenges such as pro-
longed tuning time and potential instability. Therefore, the
efficient and prompt selection of parameters poses a signifi-
cant challenge.

IV. NONLINEAR PARTICLE SWARM OPTIMIZATION

As previously mentioned, the issue of parameter iden-
tification can be viewed as an optimization problem. The
forthcoming discussion will employ an optimized approach
to expedite the selection of parameters.

A. Particle Swarm Optimization (PSO)

PSO is used to explore the optimal solution by mimicking
the movement and flocking behavior observed in birds [32].
The algorithm initiates by randomly distributing a flock of
particles across the search space [33], where each particle
represents a potential solution. These particles traverse the
space with a defined velocity, aiming to identify the global
optimum position through iterative processes. During each
iteration, a particle adjusts its velocity vector by considering
its momentum, the effect of its personal best position, and
the overall best position found by any particle within the
flock [34]. Subsequently, the particle relocates to a newly
computed position based on these adjustments.

Assuming the search space is n-dimensional. The position
and velocity of particle ¢ are represented by I; and v,
respectively. Starting from a random solution, the fitness
function is utilized to update both the best individual solution
(pbest) and the best group solution (gbest), along with the
velocities and positions of the particles in each iteration. At
each step, the velocity and subsequent position of a particle
are determined as follows:

vl = wol + eyry (pbestt — 1F) + cara(gbestt — 1Y)

€))

B =1+ o} (10)

where ¢ € N represents the number of particles; w > 0
represents the inertia weight that reflects the effect of his-
torical particle velocity on current particle velocity; ¢; and
co represent the positive constant parameters representing
cognitive learning factor and social learning factor, which
determine the deviation between individual optimal solution
and global optimal solution; r; and 7o represent random
variables in a range of [0, 1] for the randomicity of searching;
0! € [Umin, Umax] and €% € [min max]) Tepresent the velocity
and position of the i-th particle in the i-th iteration, respec-
tively. The fundamental computational procedure consists of
the following steps:

Step 1:An appropriate fitness function is chosen to evaluate
the effectiveness of potential solutions.

Step 2: The initial search range, along with the initial
velocity and position for each particle, is defined.

Step 3: The velocities and positions of particles are cal-
culated in each iteration based on the previously defined
parameters.

Step 4: The optimal solutions for individual particles (pbest)
and the global best solution (gbest) are updated using the pre-
defined fitness function, and particle velocities and positions
are adjusted accordingly.

In PSO, inertia weight (w) and acceleration coefficients (c;
and cp) play crucial roles in affecting the exploration and
exploitation abilities of particles within the solution space.
The inertia weight governs the velocity update of the particle,
where a higher weight value can boost the global search
capability, and a lower weight value can refine the search
process. On the other hand, c¢; and c; determine how the
particle accelerates towards its historical best position and
the group’s best position, respectively. Careful selection of
these parameters is essential to strike a balance between
global exploration and local exploitation, thereby enhancing
the overall optimization performance.

Remark 5. During the optimization process, the rationality
of parameter selection impacts the convergence speed and
accuracy of the algorithm. An excessively large inertia
weight can lead to oscillation of particles in the solution
space, hindering convergence, whereas an excessively small
weight may prematurely trap particles in local optimal
solutions. Likewise, an inappropriate setting of acceleration
coefficients can alter the search trajectory of particles,
diminishing the algorithm’s overall performance. Therefore,
the careful selection of optimization parameters plays a
pivotal role in guaranteeing the effective operation of PSO
algorithm.

B. Parameter design

As previously mentioned, a significant limitation of PSO
is its susceptibility to getting stuck in local minima when
confronted with complex or multimodal functions

To mitigate premature convergence, numerous studies have
been undertaken to devise strategies for circumventing this
challenge. The rationale behind the proposed approach is
to surmount this limitation. This paper introduces NPSO
method. A distinguishing feature of NPSO compared to PSO
is that the predefined parameters of NPSO vary nonlinearly
with the iteration count. The schematic representation of
NPSO is depicted in Fig. 5.
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1) Inertia weight: The inertia weight is a parameter that
signifies the effect of past particle velocity on the present
particle velocity . When set to a high value, the system
exhibits improved global search ability, albeit at the cost of
extended convergence time. Conversely, a low inertia weight
accelerates convergence but may lead to local optimization.
Considering these factors, the inertia weight can be deter-
mined as follows:

Wmaz — Wmin

exp(2 x k/G)*

where k represents the current iteration step and G represents
the maximum iteration step.

w=(1—wnaz)+ (11)

Remark 6. In the initial stage, w is set to a higher value
to improve the global search capability and prevent the
algorithm from getting trapped in local optima. As the
number of iterations progresses, w is gradually decreased
to expedite the convergence process.

2) Learning factor: The learning factor plays a significant
role in affecting the global search capability of the algorithm.
To guarantee that the algorithm demonstrates a robust global
search ability in its early stages and efficiently converges to-
wards the globally optimal value later, a dynamic adjustment
strategy has been devised as follows:

o _ Clu — C1d
C1 = Cluy 76xp(k/G) (12)
Coy — C2d
= T 13
Co = Coq + cxp(k/G) (13)

In the initial phase, when c¢; > co, it indicates that the
effect of an individual particle’s optimal value exceeds that
of the group’s optimal value, thus promoting an extensive
search. Conversely, in the subsequent phase, when co > ¢,
it signifies a stronger focus on the group’s optimal value,
allowing for localized exploration and the attainment of a
globally optimal solution with increased precision.

3) Fitness function: The fitness function aimed at min-
imizing both velocity mutation and velocity error plays a
crucial role as an indicator of the proximity of a particular
solution to the optimal one. To attain the desired optimization
result, the fitness function is formulated by taking into
account both the joint error and the velocity mutation.

F:loglo(/5/1e*3+1)+1og10(/|e|/1e*3+1) (14)

where [ & represents the absolute integral of velocity muta-
tion in entire motion period; and | |e| represents the absolute
integral of joint error.

Remark 7. The development of a fitness function aimed at
minimizing both velocity mutation and velocity error plays a
critical role in optimizing the movement of a robotic arm. By
incorporating joint error and velocity mutation throughout
the entire motion sequence, the fitness function guarantees
that the optimization procedure focuses on achieving seam-
less and precise movements. Appropriately assigning weights
to these elements provides the flexibility to emphasize various
aspects of the motion, thereby enhancing the efficiency and
dependability of the robotic system.

Remark 8. The advantage of utilizing the logarithmic func-
tion as an optimization algorithm stems from its stable,

monotonic increasing nature and convexity. These charac-
teristics enable the algorithm to circumvent local optimal
solutions and enhance the convergence speed of the algo-
rithm [25]. The determination of the base of the logarith-
mic function is typically achieved through a trial-and-error
method.

Initial search range
‘ Parameter
initialization

Initial group of particles
and parameters

r

Fitness function J

l Parameter
Update pbest , gbest . position xi , update
velcoity vi , inertia weight w , and
acceleratio constant ci

| __________ - — — /1
| Target reached ? :
I
I Result :
| judgment |
D }

Fig. 5. Flowchart of NPSO Algorithm

Based on the analysis presented in Sections 3 and 4, the
algorithm flow chart derived from the integration of V-DLS
and NPSO as proposed in this study is illustrated in Fig. 6

The initial process of the NPSO is carried out according
to the description provided in Section 4.2. The optimized
Amaz Will be determined upon completion of the iterations.
As the manipulator is in motion, the controller receives the
desired velocity command. The monitored joint velocities are
utilized to compute the joint velocity change index using Eq.
(7). Subsequently, the updated A is determined using Eq. (8)
and then inserted into J. Finally, the modified A is obtained.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, both simulations and experiments are
carried out to validate the efficacy of the proposed algorithm.
The simulation is executed utilizing MATLAB 2023 Robotic
Tools on a Windows 11, 64-bit computing system. Diverse
scenarios are examined to assess the algorithm’s performance
across varying conditions. Essential parameters are modified
to analyze their effect on the results. The experimental
setup replicates the conditions utilized in the simulation
to maintain consistency. Data is gathered and examined to
contrast the results obtained from both methodologies. The
results illustrate the algorithm’s capacity to accomplish the

Volume 33, Issue 9, September 2025, Pages 3861-3871



Engineering Letters

Initial NPSO parameters o,c, c,

Parameter optimization based on
NPSO

v

J = logm(jc?/le’3 +I)+I0g10(JIeI/le’3 +1)

Update pbest, gbest, position, velocity,

acceleration constant

Joint Velocity at k step
i (k)I 4,0

q,(k —I)T q,(k—1)
Joint Velocity at (k-1) step

Fig. 6. Flow diagram of V-DLS combined with NPSO

intended goals, emphasizing its resilience and effectiveness.
A comprehensive analysis is presented to elucidate the ob-
servations and address any disparities between the simulation
and experimental data.

A. Simulation verification

1) Design procedure: To verify the effectiveness of the
proposed method, the simulation experiment setup is con-
ducted as follows:

Step 1: The initial position of the robot arm is set away from
the singular area;

Step 2: The robot arm is directed to cross the singular area
along a straight line at a predetermined constant velocity,
with the end effector moving along the negative direction of
Y-axis of the inertial coordinate system (Fig. 7);

Step 3: The end-effector velocity tracking error and the joint
angle mutation are measured.

The initial coordinates of the end effector in the inertial
system are set as (x,y, 2).

z =0.7954m,y = —0.2873m, z = 1.19m

The joint angles corresponding to the kinematics of the
robotic arm are expressed as follows:

01 = —28.8°,05 = —86.4°,03 = —3.6°

04 =90°,05 = 25.2° 65 = 0°

The initial search range of the NPSO algorithm is deter-
mined through a process of trial and error as A4, € [0,0.5],
Winin = 0.1, Whae = 0.9, c1g = cog= 0.5, and ¢y, = coy, = 2,
where iteration times is 50s. According to the optimization
algorithm described in this study, the optimal value of \,,4.
are 0.05, 0.08 and 0.12, respectively, which associated with
various end-effector velocities 0.02 m/s, 0.015m/s and
0.01m/s.

Remark 9. The M. computed by NPSO exhibits an
decreasing trend with the rise in the end effector velocity. As

I
I
I
I
A =g, (k) —q,(k=1))’ +(q, (k) — g, (k 1))’ I—Al—b A= -|i> Jacobian matrix

Desire velocity
Command

g

3
Modfied Velocity
Command

the velocity escalates, the system becomes more responsive
to variations in J coefficients, leading to a decrease in \pqz.

£
aq effécto

'r
Moy,
2~ ‘on alo
gy
axyg

ixarm

Fig. 7. Initial pose of the manipulator

2) Simulation results: In this section, the performance of
the traditional DLS method and V-DLS is compared based on
the velocity parameters outlined above. To effectively show-
case the superiority of the algorithm proposed in this study,
three scenarios are employed for simulation verification.

Casel: Velocity at 0.02m/s

The A calculated at 0.02 m/s using V-DLS is illustrated
in Fig. 8. In Fig. 8, the value of A is approximately 0.0185.
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Fig. 8. Comparative simulation analysis of adaptive damping optimization in singular configuration control

Between 10s and 12s, a singular configuration leads to a
sudden fluctuation in A; from 16s to 23s, A\ exhibits a
continuous decrease; and from 24s to 28s, A shows a gradual
increase. This increase may be attributed to the necessity
of higher joint velocities when the end effector reaches the
boundary configuration.

In Fig. 8, the velocity of 4-th joint exhibits a gradual
increase near the singular point. A peak value is observed
between 10s and 15s, during which the manipulator assumes
a singular configuration. The maximum velocities of DLS
and V-DLS are recorded as 0.8 m/s and 0.4 m/s, respec-
tively. The results indicate that V-DLS outperforms DLS in
mitigating velocity fluctuations.

Case2: Velocity at 0.015 m/s

The A calculated at 0.015 m/s using V-DLS is illustrated
in Fig. 8. In Fig. 8, the value of \ increases to 2.95 x 1072
between 10s and 25s, indicating the manipulator is approach-
ing a singular configuration. Subsequently, there is a gradual
increase from 40s to 60s as the manipulator moves towards
the edge position, necessitating an increase in joint velocity.

The velocity profiles for the joints when the velocity is
set to 0.015 m/s are illustrated in Fig.8. Specifically, the
velocity of the 4-th joint of DLS reaches 0.35 m/s at the 15th
second, whereas the velocity of V-DLS is 0.15 m/s at the
same time point. These results indicate that the performance
of V-DLS method proposed in this study surpasses that of
the conventional DLS.

Case3: Velocity at 0.01 m/s

The A calculated at 0.01 m/s using V-DLS is illustrated in
Fig. 8. In Fig. 8, \ attains a maximum value of 4.4 x 1072
at 35s, indicating the initiation of the manipulator’s entry
into the singular configuration. The joint velocity results are
depicted in Fig. 8. Analysis of the results presented in Fig.
8. indicates that V-DLS exhibits superior performance in
velocity planning.

B. Experimental setup

To assess the proposed methodology, experiments were
carried out on the experimental platform illustrated in Fig.
9 (a). The experiment utilized a 6-DOF series hydraulic
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(a) 6-DOF hydraulic manipulator

Fig. 9. Experiment setup ([32] and owned by the author(s))

manipulator with an end load of 35 kg and an arm span
of 1550 mm. The hardware components of the control
system are illustrated in Fig. 9 (b). The platform comprises a
hydraulic manipulator and a control module. The hydraulic
manipulator is equipped with 6 servo valves (HY110) and
6 rotary encoders (SSI). The control module consists of a
host computer, a servo amplifier, and an industrial computer
(IPC). The sampling time is set at 250 Hz (4 ms). The real-
time control software is developed using Codesys, which
provides a real-time environment for control software on the
Windows 10 operating system [32].

Fig. 10 depict the experimental procedure at the com-
mencement, intermediate, and concluding positions, respec-
tively. These figures delineate the advancement of the robotic
arm’s motions during the trial, emphasizing the variations in
location and arrangement across the different phases.

1AL

initial pose middle pose end pose

Fig. 10. Triple-phase robot pose transition: from initial to terminal config-
uration

C. Comparative experimental results

To assess the efficacy and practicality of the developed
control algorithm, two methods are compared as follows:

Case 1: Velocity at 0.02 m/s

The A calculated at 0.02 m/s using V-DLS and the
feedback of joint velocity is shown in Fig. 11.

In Fig. 11, as the robot approaches the singular point,
the value of \ is approximately 1.84 x 10~2. Analysis of
the angular velocity curve of the 4-th joint reveals that the
angular velocity varies within the range of [0.04, -0.02].
Furthermore, the experimental results align with the results
obtained from the simulation

Case 2: Velocity at 0.015m/s

Upper computer
Develpoment
environment

Electro-hydraulic
amplifier

Hydraulic
manipulator

Explosion-prodf
encoder

(b) Control schematic diagram

The A calculated at 0.015 m/s using V-DLS and the
feedback of joint velocity is shown in Fig. 11.

In Fig. 11, the value of X is approximately 2.943 x 102
when the manipulator is positioned at the singular point.
Additionally, Fig. 11 illustrates that the velocity change in
the 4-th joint ranges from 0.4°/s to -0.4°/s.

Case 3: Velocity at 0.01 m/s

The A calculated at 0.01 m/s using V-DLS and the
feedback of joint velocity is shown in Fig. 11.

In Fig. 11, the A value at the singular point of the robot
arm is approximately 4.414 x 10~2 during the movement.
Furthermore, Fig. 11 illustrates the change in velocity of the
4-th joint from 0.1°/s to -0.1°/s.

D. Comparative pressure fluctuation

The pressure fluctuation comparison results are presented
in Table II. In the experimental scenario without avoidance,
the pressure fluctuation measures 0.2 M Pa. Conversely, in
the scheme incorporating DLS, the pressure fluctuation is
reduced to 0.1 M Pa, and in V-DLS scheme, the pressure
fluctuation further decreases to 0.01 M Pa.

TABLE I
PRESSURE FLUCTUATION RESULTS

Method Fluctuation Amplitude
Without DLS 0.2 MPa
DLS 0.1 Mpa
V-DLS 0.01 Mpa

In summary, the optimization method presented in this
paper offers advantages in mitigating singularities in robotic
arm systems. By effectively tackling the issues related to
singular configurations, this method guarantees a more seam-
less and stable operation. A key advantage of this strategy
lies in its capacity to reduce sudden and drastic variations,
or mutations, in joint velocities that commonly occur in
proximity to singular configurations. Such abrupt changes in
velocity have the potential to induce significant mechanical
strain and instability in the hydraulic system, which could
result in damage and compromise the manipulator’s overall
performance and longevity.
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Fig. 11. Experimental validation of adaptive DLS performance in singular configuration control

VI. CONCLUSION

This study focuses on a self-developed 6-DOF hydraulic
manipulator and investigates the effect of the damping co-
efficient selection on the motion performance of serial ma-
nipulators when employing DLS method to address singular
configuration issues. The analysis focuses on the singular
configurations of the wrist within its operational space based
on the robot model. A V-DLS is introduced, which utilizes
the rate of change of joint velocity to calculate the damping
coefficient and optimizes it through a NPSO algorithm.
This methodology effectively mitigates the occurrence of
singular configurations in the manipulator. In comparison to
conventional DLS methods, the proposed algorithm exhibits
enhancements in reducing velocity errors and minimizing
sudden velocity changes, thereby ensuring a more stable and
precise control of the hydraulic manipulator.

REFERENCES

[1] H. Wang, Z. Zhou, X. Zhong, and Q. Chen, “Singular Configuration
Analysis and Singularity Avoidance with Application in an Intelligent
Robotic Manipulator,” Sensors, vol.22, no.1, pp.1239, 2022.

[2] H. Han and J. Park, “Robot Control near Singularity and Joint
Limit Using a Continuous Task Transition Algorithm Regular Paper,”
International Journal of Advanced Robotic Systems, vol.10, pp.10,
2013.

[3] D. Halperin D, L. Kavraki, K. Solovey, “Robotics,” Handbook of dis-
crete and computational geometry. Chapman and Hall/CRC: pp.1343-
1376, 2017.

[4] K. Zheng, R. Sun, F. Li, Y. Liu, D. Li, and R. Song, “Research and
application of the centralized drive and control system for a hydraulic
manipulator,” Journal of Jilin University (Engineering and technology
Edition), vol.54, no.11, pp.3358-3371, 2024.

[51 Y. Nakamura, H. Hanafusa and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” The International Journal
of Robotics Research, vol.6, no.2, pp.3-15, 1987.

[6] C. Wampler, “Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods,” IEEE Transactions
on Systems, Man, and Cybernetics, vol.16, no.1, pp.93-101, 1986.

[71 A. Maciejewski and C. Klein, “Numerical filtering for the operation
of robotic manipulators through kinematically singular configurations.”
Journal of Robotic systems vol.5, n0.6, pp.527-552, 1988.

[8] L. Phuoc, P. Martinet, S. Lee, and H. Kim, “Damped least square based
genetic algorithm with Gaussian distribution of damping factor for
singularity-robust inverse kinematics,” Journal of Mechanical Science
and Technology, vol.22, pp.1330-1338, 2008.

[9] S. Buss, J. Kim, “Selectively damped least squares for inverse kine-
matics,” Journal of Graphics tools, vol.10, no.3, pp.37-49, 2005.

[10] R. Jin, P. Rocco and Y. Geng, “Cartesian trajectory planning of space

Volume 33, Issue 9, September 2025, Pages 3861-3871



Engineering Letters

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

robots using a multi-objective optimization,” Aerospace Science and
Technology, vol.108, pp.106360, 2021

Y. Zang, W. Hui, and Q. Yong, “GIL partial discharge localization
method based on 3D optical fingerprint and NPSO-KELM,” Proceed-
ings of the CSEE, vol.40, no.20, pp.6754-6764, 2020.

M. Alhussein and S. Haider, “Improved particle swarm optimization
based on velocity clamping and particle penalization,” 2015 3rd inter-
national conference on artificial intelligence, modelling and simulation
(AIMS), pp.61-64, 2005.

P. Kalra, P. Mahapatra and D. Aggarwal, “An evolutionary approach
for solving the multimodal inverse kinematics problem of industrial
robots,” Mechanism and Machine Theory, vol.41, pp.1213-1229, 2006.
S. Tabandeh, C. Clark, W.A Melek, “A genetic algorithm approach
to solve for multiple solutions of inverse kinematics using adaptive
niching and clustering,” 2006 IEEE International Conference on
Evolutionary Computation, pp.1815-1822, 2006.

A. Dobnikar, N. Steele, and D. Pearson, “A niched-penalty approach
for constraint handling in genetic algorithms,” Artificial Neural Nets
and Genetic Algorithms: Proceedings of the International Conference
in Portoroz, Slovenia, pp.235-243, 1999.

H. Huang , S. Xu, and C. Wu, “A hybrid swarm intelligence of artificial
immune system tuned with Taguchi—genetic algorithm and its field-
programmable gate array realization to optimal inverse kinematics for
an articulated industrial robotic manipulator,” Advances in Mechanical
Engineering, vol.8, no.1, 2016.

R. Koker, “A genetic algorithm approach to a neural-network-based
inverse kinematics solution of robotic manipulators based on error
minimization,” Information Sciences, vol.222, pp.528-543, 2013.
Z.Zhou, H. Guo, and Y. Wang, “Inverse kinematics solution for robotic
manipulator based on extreme learning machine and sequential mu-
tation genetic algorithm,” International Journal of Advanced Robotic
Systems, vol.15, no.4, 2018.

G. Zhao, P. Zhang, G. Ma, and W. Xiao, “System identification of
the nonlinear residual errors of an industrial robot using massive
measurements,” Robotics and Computer-Integrated Manufacturing,
vol.59, pp.104-114, 2019.

A. Almusawi, L. Diilger and S. Kapucu, “A new artificial neural
network approach in solving inverse kinematics of robotic arm (denso
vp6242),” Computational Intelligence and Neuroscience, vol.1, 2016.
X. Wang, X. Liu, and L. Chen, “Deep-learning damped least squares
method for inverse kinematics of redundant robots,” Measurement,
vol.171, 2021.

S. Tejomurtula, and S. Kak, “Inverse kinematics in robotics using
neural networks,” Information Sciences, vol.116, no.2, pp.147-164,
1999.

B. Karlik, and S. Aydin, “An improved approach to the solution
of inverse kinematics problems for robot manipulators,” Engineering
Applications of Artificial Intelligence, vol.13, no.2, pp.159-164, 2000.
M. Krishnan, and S. Ashok, “Kinematic analysis and validation of an
industrial robot manipulator,” TENCON 2019-2019 IEEE Region 10
Conference (TENCON), pp.1393-1399, 2019.

Y. Zheng, “Study on control System Design and Stability Control for
Mobile Hydraulic Manipulator,” ShanDong University , 2023.

O. Omisore, S. Han, and L. Ren, “Deeply-learnt damped least-squares
(DL-DLS) method for inverse kinematics of snake-like robots,” Neural
Networks, vol.107: PP.34-47, 2018.

R. Koker, T. Cakar, and Y. Sari, “A neural-network committee ma-
chine approach to the inverse kinematics problem solution of robotic
manipulators,” Engineering with Computers, vol.30 pp.641-649, 2014.
H. Liu, and T. Zhang, “A new approach to avoid singularities of
6-DOF industrial robot,” 2010 IEEE International Conference on
Mechatronics and Automation, pp.247-251, 2010.

M. Safeea, R. Bearee, and P. Neto, “A modified DLS scheme with
controlled cyclic solution for inverse kinematics in redundant robots,”
IEEE Transactions on Industrial Informatics, vol.17, no.12, pp.8014-
8023, 2021.

M. Tucker, and N. Perreira, “Generalized inverses for robotic manip-
ulators,” Mechanism and Machine Theory, vol.22, no.6, pp.507-514,
1987.

A. Colomé, and C. Torras, “Closed-loop inverse kinematics for
redundant robots: Comparative assessment and two enhancements,”
IEEE/ASME Transactions On Mechatronics, vol.20, no.2, pp.944-955,
2014.

Y. Zheng, R. Sun, F. Li, Y. Liu, R. Song, and Y. Li, “Parameter
identification and position control for helical hydraulic rotary actuators
based on particle swarm optimization,” Mechatronics, vol.94, 2023.
Y. Chang, C. Ko, “A PSO method with nonlinear time-varying evolu-
tion based on neural network for design of optimal harmonic filters,”
Expert Systems with Applications, vol.36, no.3, pp.6809-6816, 2009.

[34] N. Rokbani, and A. Alimi, “Inverse Kinematics Using Particle Swarm

Optimization, A Statistical Analysis,” Procedia Engineering, vol.64,
pp.1602-1611, 2013.

Volume 33, Issue 9, September 2025, Pages 3861-3871





