
 

 

 Abstract—Surface defects in steel can significantly affect  

its mechanical properties, product safety and economic value, 

making timely detection and repair essential. However, the 

wide variation in defect sizes and characteristics presents a 

major challenge for inspection, and existing mainstream 

models often suffer from missed detections and false positives 

across different defect scales. To address these limitations, this 

paper proposes a novel object detection model, VAS-DETR, 

which integrates RepConv and Efficient Multi-head Attention 

(EMA) to create a more effective backbone for feature 

extraction. A Multi-Scale Atrous Fusion (MSAF) module is 

introduced to enhance multi-scale feature aggregation, thereby 

improving robustness to defect size variation. Additionally a 

Multiscale Multi-head Self-Attention (M2SA) mechanism is 

incorporated into the AIFI module of RT-DETR to better 

capture fine-grained features. To further improve localization 

performance, especially when bounding box overlap is limited, 

the Generalized IoU (GIoU) loss is replaced with a Modified 

Penalty DIoU (MPDIoU) loss. Experimental results on the 

NEU-DET dataset demonstrate that VAS-DETR improves 

𝐦𝐀𝐏𝟓𝟎   by 3.93% and 𝐦𝐀𝐏𝟓𝟎:𝟗𝟓  by 4.58% compared to 

RT-DETR, while reducing GFLOPs by 12.74% and the 

number of parameters by 16.85%. The proposed model 

significantly enhances feature representation and multi-scale 

fusion capabilities, offering an accurate and efficient solution 

for industrial steel surface defect detection without increasing 

model complexity. 

 

Index Terms—Deep Learning, RT-DETR, Parallel 

Convolution,  Defect Detection 

I. INTRODUCTION 

ot rolled strip refers to strip and plate products 
manufatured through hot rolling, widely applied in the 

automotive, electrical machinery, chemical and shipbuilding 

industries, as well as used as billets for producing 
cold-rolled and welded pipes. Quality control of hot-rolled 
strip is crucial, with technical requirements covering 
dimensional accuracy, flatness, surface quality and 

mechanical perforance.  Among these, surface defects are 
particularly significant due to their diverse types and 

 
Manuscript received April 8, 2025; revised August 17, 2025. 

Zhen Qiang Dai is a Postgraduate Student of School of Electronic 

Information, University of Science and Technology Liaoning, Anshan, 

114051 China (e-mail:232085400011@stu.ustl.edu.cn). 

Shao Chuan Xu is a Professor of School of Control Science and 

Engineering, University of Science and Technology Liaoning, Anshan, 

114051 China  (Corresponding author, phone: 86-0412-5929747; e-mail: 

shaochuanxu1@163.com). 

Xiang Yi Yan is a master's graduate in control science and 

engineering  from University of Science and Technology Liaoning, Anshan, 

P. R. China (e-mail: 793119513@qq.com).  

Si Hong Xu  is a master's graduate in control science and engineering  

from University of Science and Technology Liaoning, Anshan, P. R. China 

(e-mail: 735911068@qq.com).  

 

unpredictable locations [1]. Defect detection involves both 
identifying the defect category and localizing its position, 

making it a highly challenging task. Existing research 
primarily focuses on magnetic particle inspection, penetrant 
testing, eddy current inspection, ultrasonic testing, machine 
vision, and deep learning methods [2-8]. Among these, 
convolutional neural networks (CNNs), known for their 
powerful feature extraction capabilities and ability to 

autonomously learn image representations, have become 
indispensable in industrial inspection tasks [9]. Currently, 
mainstream object detection algorithms include Fast R-CNN 
[10], Faster R-CNN [11], Mask R-CNN [12], SSD [13], the 
YOLO [14] series, and Transformer-based DETR [15] series. 
Compared to traditional methods, defect detection 

techniques based on deep learning are more efficient and 
accurate in industrial environments. For example, Chen et al. 
proposed a detection method for ultrasonic images of weld 
seams by combining Faster R-CNN with a ResNet50 
incorporating deformable convolution modules, enhancing 
small object detection accuracy through K-means clustering 

and ROI Align [16]. Wang et al. developed a rail defect 
detection algorithm based on Mask R-CNN, overcoming the 
limitations of IoU using the CIoU metric [17]. Bo et al. 
improved the SSD algorithm by integrating channel 
attention and feature fusion modules to enhance small object 
detection accuracy in workpiece recognition [18]. Zheng et 

al. proposed MD-YOLO based on YOLOv5, improving 
object recognition and localization capabilities by 
introducing a dynamic head module [19]. Wang et al. 
developed the improved YOLOv8n-DSDM algorithm, 
integrating the C2f-DSConv module and a small object layer, 
and optimized regression loss with MPDIoU to improve 

detection accuracy [20]. Kong et al. focused on steel surface 
defect detection by enhancing YOLOv8 with attention-free 
and SPPF modules to optimize specific region feature 
extraction and expand the receptive field [21]. Cheng et al. 
improved the RT-DETR model by incorporating additional 
prediction layers and the CA mechanism to enhance the 

accuracy of crack detection in metal components [22]. 

Although the aforementioned deep learning-based 

industrial inspection models have largely met the core 
requirements of modern defect detection, most approaches 
rely on the integration of shallow features and attention 
mechanisms to enhance the detection of small targets. While 
these techniques offer slight improvements in accuracy over 
baseline models, their effectiveness remains limited. This 

study investigates the NEU-DET dataset [23], which 
contains six typical surface defect categories found in 
hot-rolled steel strips. These defects exhibit a high level of 
complexity, primarily due to significant dimensional 
variations not only across different defect types but also 
within individual categories. This diversity spans large, 
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medium, and small-scale defect features. Therefore, 
enhancing small-object detection alone is insufficient to 
optimize overall accuracy and detection performance. More 
comprehensive strategies are required to effectively address 

the challenges posed by multi-scale surface defects. 

Given that the RT-DETR model provides real-time, 

end-to-end detection capabilities and meets the practical 
requirements of industrial defect inspection, RT-DETR-R18 
[25] is selected as the baseline model in this study. To 
address the challenges posed by defect detection across 
varying scales, we propose an improved model named 
VAS-DETR (Variable Scale Detection Transformer), based 

on RT-DETR-R18. VAS-DETR aims to balance detection 
accuracy across different defect sizes while ensuring that 
model complexity remains unchanged, thereby enhancing 
performance in detecting multi-scale and complex defect 

features. The main contributions of this study are as follows: 

1) In this study, a new target detection model named 
VAS-DETR is proposed to address the problem of accuracy 
degradation caused by significant size differences in the 

detection of surface defects on hot rolled steel. VAS-DETR 
has significant advantages in the detection of defects with 
large size differences, and improves the accuracy of the 
detection of defects on the surface of hot rolled steel under 
the premise of ensuring that there is no loss in the 

computational efficiency. 

2) Two new modules ERA Block and MSAF are 
proposed. Among them, ERA Block significantly enhanced 

the feature extraction capability of the model, while MSAF 
module improved the performance of the model in capturing 
global information and local details, further improving the 

overall detection accuracy. 

3) In order to further improve the model performance, 
the Multi-Scale Feature Integration (MSFI) module is 
proposed, which integrates the AIFI module of RT-DETR 
with the M2SA module to enhance the capability of 

capturing fine features. In addition, Modified Penalized 
Distance IoU (MPDIoU) is introduced as an improved loss 
function to make up for the shortcomings of GIoU [24] in 

small target detection and convergence efficiency. 

II. METHOD INTRODUCTION 

A. Constructing VAS-DETR 

 In this paper, we propose VAS-DETR(Variable Scale 
Detection Transformer), an improved model based on 
RT-DETR [25], to address the challenges of low detection 
precision and difficulty in identifying surface defects in 
hot-rolled steel. The VAS-DETR structure is shown in 
Figure 1, and its backbone network consists of four stages. 

Each Efficient RepAttention Block (ERA Block) represents 
a stage in Figure 1. ERA Block integrates RepConv [27] 
with Efficient Multi-head Attention (EMA) [28] 
implementation to ensure the backbone network's ability of 
extracting image features while improving the inference 
efficiency. The features of stages 2, 3 and 4 are input into an 

efficient hybrid encoder consisting of Multi-Scale Feature 
Integration (MSFI) and Multi Scale Atrous Fusion (MSAF) 
to convert them into image feature sequences. Then, 
uncertainty-minimum query selection selects a fixed number 
of encoder features as initial object queries for the decoder. 

Finally, the decoder with the auxiliary prediction header 
iteratively optimizes the object query to generate categories 
and boxes. In this study, MPDIoU loss function is chosen to 
replace the original loss function to make up for the 

shortcomings of the original loss function in small target 
detection and convergence efficiency. The design and 
performance of the ERA Block, MSFI and MSAF modules 
as well as the selection of the loss function will be analyzed 
in detail in the subsequent part of this paper, and their 
superiority in industrial defect detection will be verified. 

 

 
Fig. 1. Network Architecture of  VAS-DETR 

 

B. Backbone 

To improve the efficiency of model calculation and 

reduce redundant calculation. In this study, the backbone 
network of RT-DETR is optimized based on Partial 
Convolution (PConv) proposed in 2023 and FasterNet [26]. 
Specifically, this study introduced two key submodules, 
RepConv [27] and EMA (Efficient Multi-head Attention) 
[28]. It is named Efficient RepAttention Block (ERA 

Block). 
The original FasterNet blocks consist of a PConv layer 

followed by two PWConv layers. The normalization and 
activation layers are placed only after the middle layer to 
preserve the feature diversity and achieve lower latency [26]. 
PConv divides the input feature channels into processed and 
unprocessed parts, and only the selected part of the channel 

performs the convolution operation while keeping the 
characteristics of the other channels unchanged. PConv 
achieves flexible feature extraction and fusion in this way. 

For an input feature map x∈R^(C×H×W), PConv divides 

the channel dimension C into two parts: the convolved 

portion x_p∈R (̂C×H×W) and the unprocessed portionx_u

∈R^(C×H×W). A regular convolution is applied to x_p as 

shown in Equation (1), where W is the convolution kernel 
weight and b is the bias. The final output of PConv is shown 
in Equation (2). 

𝑦𝑝 =𝑊 ∗ 𝑥𝑝+ 𝑏                          (1) 
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𝑦 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑦𝑝 ,𝑥𝑢)                   (2) 

Pointwise convolution (PWConv) aims to make 
efficient use of information across all channels. On the input 

feature map, the joint effective receptive field of PConv and 
PWConv together presents a convolution pattern similar to 
"T" shape. In this way, the pattern is more centered than 
regular convolution, as shown in Figure 2. 

In Figure 2 (a) A PConv followed by a PWConv. (b) A 
T-shaped Conv, which spends more computation on the 

center position compared to a regular Conv (c) [28]. 
 

 
（a) PConv+PWConv             (b) T-shaped Conv        (C) regular Conv 

Fig. 2. Comparison of Different Convolutions. 

 

In this study, the traditional 3×3 convolution in PConv 
is replaced by RepConv. As shown in Figure 3 RepConv has 
a convolutional module designed to separate the training and 
inference phases, which captures rich feature information 

through a multi-branch structure in the training phase of 
RepConv and fuses the multi-branches into an equivalent 
standard convolutional kernel in the inference phase, which 
drastically reduces the amount of computation and inference 

latency. Given input features 𝑋 ∈ 𝑅𝐶×𝐻×𝑊 and output 

features 𝑌 ∈ 𝑅𝑐
′×𝐻×𝑊 , RepConv performs feature 

extraction during training as shown in Equation (3). During 
inference, its multi-branch structure is reparameterized into 
a single convolution operation as shown in Equation (4), 

where 𝑊𝑒𝑞and 𝑏𝑒𝑞  the equivalent convolution kernel and 

bias. 

 

 
Fig. 3. Training and Inference Stages of RepConv 

 

{

𝑌3×3 = 𝑊3×3 ∗ 𝑋 + 𝑏3×3
𝑌3×3 = 𝑊1×1 ∗ 𝑋 + 𝑏1×1

𝑌𝑖𝑑 = 𝑋 + 𝑏𝑖𝑑
𝑌 = 𝑌3×3+ 𝑌1×1+𝑌𝑖𝑑

                              (3) 

{

𝑊𝑒𝑞 =𝑊3×3+𝑊1×1 +𝑊𝑖𝑑

𝑏𝑒𝑞 = 𝑏3×3+ 𝑏1×1+ 𝑏𝑖𝑑
𝑌 = 𝑊𝑒𝑞 ∗ 𝑋 + 𝑏𝑒𝑞

                            (4) 

This design offers significant advantages in scenarios 
with high real-time performance requirements. Therefore, 
this study incorporates RepConv to optimize the model 
architecture. Additionally, the Efficient Multi-head 

Attention (EMA) mechanism is integrated into the 
Faster_Block module to enhance feature extraction. The 
EMA module achieves efficient modelling of local and 
global features through parallel multi-scale branching and 

cross-space learning methods. Channel dimensionality 
reduction operations are avoided, reducing information loss 
while keeping the computational overhead low. Compared 
to other attention modules, EMA has lower parametric 

counts and FLOPs while maintaining strong feature 
modelling capabilities. Its design is well suited to meet the 
dual requirements of real-time and accuracy for steel defect 
detection tasks in industrial environments. In summary, this 
study designs the ERA Block module to replace the Basic 
Block module in the original model, and its structure is 

shown in Figure 4. 
 

 
Fig. 4. The Architecture of the ERA Block Module 

 

C. Optimization of the Attention-based Intra-scale Feature 
Interaction (AIFI) Module  

AIFI is a Transformer-based network module that 

enables global feature modelling through standard 
Multihead Attention. AIFI embeds spatial information 
through 2D sine-cosine positional coding to capture long 
range dependencies. AIFI is able to preserve global features 
while possessing adaptability to input data, making it 
suitable for global context modelling tasks. However, due to 

its bias towards global features resulting in low sensitivity to 
small targets, there may be a decrease in the detection 
accuracy of subtle defects on the steel surface, such as cracks 
and scratches. 

To address the issue of low detection accuracy caused 
by varying defect sizes in steel surface inspection tasks, this 

study improves the AIFI module by drawing on the M2SA 
module proposed by Wu et al. A new Multi-Scale Feature 
Integration (MSFI) module is proposed, with its structure 
illustrated in Figure 5 [29]. 

In the MSFI module, the input source features first 
undergoes a multi-scale multi-head self-attention module 

and a channel attention module to extract local and global 
contextual features (denoted as 𝑠𝑟𝑐2). These features are 
then updated through residual connections and further 

enhanced by a feed-forward network, producing 𝑠𝑟𝑐3 . 
Finally, residual connections are used to fuse the features, 
generating the output features. The overall process is 
expressed by the following equations: 

𝑠𝑟𝑐2 = 𝑀𝑢𝑡𝑖𝑙𝑠𝑐𝑎𝑙_𝑀𝐻𝑆𝐴(𝑠𝑟𝑐)                         (5) 

𝑠𝑟𝑐 = 𝑠𝑟𝑐 +𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑠𝑟𝑐2)                               (6) 
𝑠𝑟𝑐3 = 𝐹𝐶2(𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑅𝑒𝐿𝑈(𝐹𝐶1(𝑠𝑟𝑐))))                (7) 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑟𝑐 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑠𝑟𝑐3)                           (8) 
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Fig. 5. Structure of the MSFI Module 

 

MSFI differs from AIFI in the calculation of multi-head 
self-attention. Unlike traditional methods that directly 
generate query (Q), key (K), and value (V) tensors from 
input feature X, MSFI generates query tensors from X and 

key and value tensors from P, where P is a feature with lower 
resolution but rich multi-scale context information obtained 
by Multiscale. This process is formally expressed in 

Equations (9) and (10), where 𝑑𝑘  denotes the channel 

dimension of the key, and √𝑑𝑘  is used for approximate 

normalization. 
(𝑄,𝐾,𝑉) = (𝑋𝑊𝑞 ,𝑃𝑊𝑘, 𝑃𝑊𝑣)                     (9) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄⋅𝐾𝑇

√𝑑𝑘
) ⋅ 𝑉                     (10) 

In addition, MSFI introduces a channel attention 
branch to enhance information extraction along the channel 
dimension. The features generated by this branch are 
expressed in Equations (11), (12), and (13). 

𝑋𝑝 = 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑋)                                          (11) 

𝑋𝐶 = 𝑅𝑒𝐿𝑢6(𝐶𝑜𝑛𝑣1×1(𝑋𝑝))                             (12) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑐 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣1×1(𝑋𝑐))⨂𝑋）             (13) 

The fusion of Multihead Self-Attention and channel 
attention features can be expressed as Equation (14). 
𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑐                      (14) 

MSFI module combines local features and global 

features through multi-scale convolution and Multihead 
Self-Attention to enhance the spatial context awareness 
ability of the model, and can better capture multi-scale 
spatial features and context information. Compared to the 
AIFI module in RT-DETR, it is more suitable for steel 
surface defect detection tasks. 

 
D. Multi Scale Atrous Fusion (MSAF)  

To effectively capture multi-scale information and 
address the diverse sizes of steel surface defects, this study 
proposes the Multi-Scale Atrous Fusion (MSAF) module. 

The MSAF structure is shown in Figure 6. Three parallel 
convolutional paths are designed in this module, and 
convolution operations with cavity rates of 1, 2 and 3 are 
adopted respectively: The first path is an ordinary 3×3 

convolution (dilation rate = 1) mainly used to extract local 
features; The second and third paths use dilation convolution 
with a dilation rate of 2 and 3, respectively, to gradually 
expand the sensory field in order to capture medium- and 
large-scale contextual information. In order to balance the 
computational complexity and the feature contribution of 

each path, the number of output channels of the second and 
third paths is halved. Finally, the three path outputs are 
spliced in the channel dimension and fused by 1×1 
convolution to ensure that the number of output channels is 
consistent with the input. 
 

 
Fig. 6. Structure of the CSP-MSAF Module 

 
To save computational resources and improve 

inference efficiency, this study combines the MSAF module 
with the Cross Stage Partial (CSP) structure to construct the 

CSP-MSAF module, which replaces the Repc3 module in 
the RT-DETR model. The structure is shown in Figure 6. 
The CSP-MSAF module achieves efficient feature learning 
through a branching structure and enhances receptive field 
representation and detail capturing capability by fusing 
multi-scale features. With minimal changes to computation 

and model complexity, this module effectively integrates 
features from different receptive fields, significantly 
improving multi-scale steel defect detection capabilities and 
providing technical support for high-precision detection of 
diverse defects. 

In the MSAF module, the receptive fields of atrous 

convolution layers with dilation rates of 1, 2, and 3 are 
illustrated in Figure 7. Red dots represent convolution kernel 
"pixels," while green areas denote their receptive fields in 
the original input. (a) For a dilation rate of 1, the receptive 
field is 3×3, identical to standard convolution. (b) At a 
dilation rate of 2, the actual 3×3 kernel achieves a receptive 

field of 7×7. (c) With a dilation rate of 3, the 3×3 kernel 
expands the receptive field to 11×11 [30]. 
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Fig. 7. Schematic Diagram of Receptive Fields in Dilated Convolutions 

 
E. Loss Function 

The RT-DETR model uses Generalized Intersection 
over Union (GIoU) as the loss function, but its optimization 
relies on the area difference between the predicted box and 

the minimum enclosing rectangle. This leads to weak 
optimization performance for small objects and limited 
gradient changes in the early stages of training, resulting in 
slow convergence of the model. To address these issues, this 
study conducts experimental comparisons of GIoU, Inner 
IoU [31], Focaler IoU [32], MPDIoU [33], Inner-MPDIoU, 

and Focaler-MPDIoU, and ultimately selects MPDIoU as 
the loss function for the improved model. MPDIoU 
introduces a penalty term based on the distance between the 
vertices of the bounding box in addition to the standard IoU, 
which measures the position deviation between the predicted 
and ground-truth boxes. This effectively mitigates the 

sensitivity issue caused by insufficient bounding box 
overlap. The method accelerates model convergence and 
improves small-object detection performance, providing an 
effective solution for optimizing the RT-DETR model. Its 
computation is given by formula (15). 

𝑀𝑃𝐷𝐼𝑜𝑈 =
1

𝑁
∑

max(𝐴𝑖⋂𝐵𝑖)+⋋⋅min⁡(𝐴𝑖∩𝐵𝑖)

𝐴𝑖∪𝐵𝑖

𝑁
𝑖=𝑛                   (15) 

III. EXPERIMENT AND RESULTS 

A. Data and Experimental Setup 

The dataset used in this study is the surface defect 
database released by Northeastern University (NEU) [23], 
which contains six typical surface defects of hot-rolled steel 

strips: rolling scale (RS), patch (Pa), crack (Cr), pitting 
surface (PS), inclusion (In), and scratch (Sc). The database 
includes 1,800 grayscale images, with 300 samples for each 
defect type. To address the limited number of samples and 

reduce overfitting, data augmentation techniques such as 
rotation, translation, and flipping were applied to the 1,800 
images, resulting in 3600 images. The images were split into 
training, testing, and validation sets at a ratio of 6:2:2, with 
2160 images for training, 720 for testing, and 720 for 
validation, ensuring each defect type was evenly distributed 

across all sets. This distribution facilitates precise feature 
learning for each defect type and ensures accurate model 
evaluation. 

The experiments were conducted on a Windows 10 
operating system with an Intel(R) Xeon(R) Gold 6226R 
CPU @ 2.90GHz, 2.89 GHz (two processors), and an 

NVIDIA GeForce RTX 4090 GPU. The deep learning 
framework used was Python version 3.11.9, PyTorch 
version 2.3.1, and CUDA version 11.2. During the training 
phase, the initial learning rate was set to 0.0001, momentum 
to 0.8, input image size was 640×640, batch size was 16, and 
the number of epochs was 450. 

 
B. Contrast experiment 

The GIoU loss function has limitations in gradient 
variation and sensitivity to small objects, leading to slower 
convergence and reduced optimization for small targets. To 
overcome these issues, this study introduces the MPDIoU 

loss function.  
To demonstrate the superiority of the MPDIoU loss 

function in the multi-scale steel defect detection task. In this 
study, comparison experiments are conducted on the 
NEU-DET dataset using a variety of loss functions, 
including GIoU, Inner IoU [31], Focaler IoU [32], MPDIoU 

[33], Inner-MPDIoU, and Focaler-MPDIoU. The 
experimental results are shown in Table 1. From the table it 
is easy to see that the MPDIoU loss function is most suitable 
for the steel defect detection task. 

 

TABLE Ⅰ 

COMPARISON OF THE PERFORMANCE OF VARIOUS LOSS FUNCTIONS IN STEEL DEFECT DETECTION 

 GIoU Inner IoU Focaler IoU MPDIoU Inner-MPDIoU Focaler-MPDIoU 

𝑚𝐴𝑃50 0.814 0.817 0.809 0.818 0.805 0.819 

𝑚𝐴𝑃50:95 0.524 0.512 0.509 0.523 0.514 0.521 

 
TABLE Ⅱ 

 COMPARISON OF MODEL ACCURACY AND COMPUTATIONAL PERFORMANCE IN DEFECT DETECTION TASKS 

Model 𝑚𝐴𝑃50  𝑚𝐴𝑃50:95 GFLOPs Parameters 

RT-DETR-R18  0.814 0.524 57.3 19974480 

YOLOv11-l [34] 0.828 0.596 86.6 25283938 

YOLOv11-m [34] 0.823 0.594 67.7 20034658 

YOLOv10-l [35] 0.826 0.592 127.2 25774580 

YOLOv10-m [35] 0.824 0.589 64.0 16491076 

YOLOv9-c [36] 0.827 0.588 103.7 25533842 

YOLOv9-m [36] 0.821 0.581 76.5 20017330 

YOLOv8-l [37] 0.828 0.593 164.8 43611234 

YOLOv8-m [37] 0.821  0.591 78.7 25843234 

YOLOv5-l [38] 0.816 0.560 109.1 53136034 

YOLOv5-m [38] 0.815 0.545 64.4 25068610 

VAS-DETR 0.846 0.548 50.0 16609608 

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3872-3882

 
______________________________________________________________________________________ 



 

 

In order to prove the performance of the proposed 
VAS-DETR model in terms of detection accuracy, 

especially the adaptability of medium to high complexity 
models in real-time scenarios, this study compared the 
existing mainstream target detection models. The 
experimental results are shown in Table 2, from which it can 
be seen that VAS-DETR achieves a significant improvement 
between performance and efficiency. In terms of detection 

accuracy, VAS-DETR's 𝑚𝐴𝑃50  reaches 0.846, an 
improvement of 4.44% over the baseline model 
RT-DETR-R18, outperforming YOLOv11-l by 2.2% and 

YOLOv8-l by 1.8%. Additionally, VAS-DETR's 𝑚𝐴𝑃50:95 

also increased by 4.58% compared to RT-DETR-R18, 
indicating a clear advantage in comprehensive detection 

capability. Compared to other high-precision models like 
YOLOv11-l and YOLOv8-l, VAS-DETR reduces 
computational complexity while improving accuracy. Its 
GFLOPs is 50.0, only 30.4% of YOLOv8-l and 57.7% of 
YOLOv11-l, with parameter count reduced to 16.6 million, 
which is 38.1% of YOLOv8-l and 65.7% of YOLOv11-l. 

This allows VAS-DETR to operate more efficiently in 
resource-constrained environments. 
 

 

 
Fig. 8. Comparison of Precision Recall Cure between RT-DETR and VAS-DET 

 

 
Fig. 9. Comparison of the 𝑚𝐴𝑃50  performance between the RT-DETR and 

VAS-DETR models 

 

In order to prove the effectiveness and robustness of the 
improved strategy, comparative experiments were 
conducted between RT-DETR and VAS-DETR on the 
public data set NEU-DET, and the experimental results were 

visualized by Precision-Recall Curve, as shown in Figure 8. 
In order to facilitate the comparison of the changes of 
various types of defects 𝑚𝐴𝑃50  this study draws the 
histogram as in Figure 9. By analysing the experimental 

results through the histograms, it can be intuitively observed 
that the improved model VAS-DETR significantly 
outperforms the baseline model RT-DETR in the detection 

of steel surface defects. 
In terms of specific categories, the detection accuracy 

of crazing and pitted_surface defects increased by 0.061 and 
0.072, respectively, indicating that the improved model's 
ability to capture features of these categories has been 
significantly enhanced. This performance improvement is 

mainly due to the Multi Scale Atrous Fusion (MSAF) 
module designed in this study. The module introduces a 
parallel cavity convolution mechanism in the process of 
multi-scale feature fusion, which enhances the adaptability 
of the model to defects of different sizes and shapes, thus 
improving the characterization ability of complex surface 

features. Except that the accuracy of rolled-in_scale is 
slightly reduced from 0.714 to 0.702, the detection accuracy 
of the other five types of defects has been improved to 
varying degrees. This distribution trend indicates that 
VAS-DETR can improve the detection performance of most 
defect categories comprehensively after optimizing the 

model structure. In summary, the improvement of 
VAS-DETR can not only effectively improve the detection 
accuracy, but also show stronger adaptability to complex 
features in specific categories. This shows that the 
optimization of the VAS-DETR model can achieve a better 
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balance in the overall detection accuracy, especially for 
some hard-to-detect defect categories. 

 
C. Ablation experiment 

In order to evaluate the necessity of RepConv, EMA, 
MSAF, MSFI and MPDIoU modules, this paper designed 18 
rounds of ablation experiment. The results are shown in 
Table 3. The ERA Block module and MSAF module can 
significantly improve the detection accuracy of steel surface 
defects while reducing the complexity of the model. The 

ERA Block module integrates RepConv and EMA modules. 
When only RepConv or EMA were applied to the backbone 
network independently, the overall detection accuracy of the 
model decreased. This is due to their respective limitations 
in feature extraction. RepConv is better at capturing local 
features efficiently while EMA focuses on modeling the 

global context. Using one of them alone will lead to the lack 
of balance between global and local feature modeling, and 
weaken the overall detection ability. However, when 
RepConv and EMA are integrated into the backbone 

network at the same time, they can complement each other 
and significantly improve the feature expression ability of 
the model.  

In addition, the introduction of MSFI module and 
MPDIoU loss function further improves the defect detection 
ability of the model without increasing the complexity of the 

model. Compared with the baseline model, the performance 
of VAS-DETR is significantly improved in several 

indicators, including 𝑚𝐴𝑃50  from 0.814 to 0.846 and 
mAP50:95  from 0.524 to 0.548. The effectiveness of all 
modules is proved by ablation experiments. 

 

TABLE Ⅲ 

 ABLATION STUDY ON THE VAS-DETR MODEL 

Methodology 𝑚𝐴𝑃50 𝑚𝐴𝑃50:95 GFLOPs Parameters 

+ERA Block+MSAF+MPDIoU 0.835 0.541 49.8 16574024 

+ERA Block +MSAF+MSFI 0.843 0.545 50.0 16609608 

+ERA Block+MSFI+MPDIoU 0.826 0.538 51.6 16937288 

+MSAF+MSFI+MPDIoU 0.832 0.538 55.5 19682384 

+ERA Block +MSFI 0.822 0.524 51.6 16937288 

+ERA Block +MSAF 0.834 0.539 49.8 16574024 

+ERA Block +MPDIoU 0.823 0.537 51.5 16901704 

+MSAF+MSFI 0.831 0.538 55.5 19587368 

+MSAF+MPDIoU 0.824 0.534 57.1 19915048 

+MSFI+MPDIoU 0.819 0.534 57.1 19915048 

+ERA Block 0.820 0.530 51.5 16901704 

+MPDIoU 0.818 0.523 57.3 19974480 

+MSFI 0.821 0.527 57.1 19915048 

+MSAF 0.825 0.523 55.3 19551784 

+EMA 0.810 0.518 51.8 16996240 

+RepConv 0.810 0.518 49.8 16886960 

RT-DETR-R18 0.814 0.524 57.3 19974480 

VAS-DETR 0.846 0.548 50.0 16609608 

 
Fig. 10. Visual comparison of detection results on the GC10-DET dataset 
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D. Evaluation of Model Generalization Performance 
To evaluate the generalization capability of the 

proposed VAS-DETR model across different data 
distributions, experiments were conducted not only on the 

NEU-DET dataset but also on the GC10-DET dataset. These 
experiments provide an effective means to assess the 
model’s performance when facing previously unseen data. 
The training results of VAS-DETR on the GC10-DET 
dataset are shown in Figure 11. Experimental results 
demonstrate that the VAS-DETR model achieves varying 

degrees of improvement in the 𝑚𝐴𝑃50metric across different 
defect categories compared to the baseline model. The 

overall average 𝑚𝐴𝑃₅₀  increased from 0.654 to 0.678, 
representing a 2.4 percentage point improvement, which 
reflects a stronger generalization capability. To more 
intuitively illustrate the advantages of VAS-DETR, visual 
comparisons between the VAS-DETR and the baseline 
model were performed, as shown in Figure 10. The 
comparison clearly indicates that VAS-DETR exhibits 

fewer issues such as overlapping bounding boxes, low 
confidence scores, and missed detections. These results 
strongly support the conclusion that the VAS-DETR model 
possesses robust generalization ability and reliability when 
applied to unfamiliar datasets. 

 

 
Fig. 11. Comparison of training results on the GC10-DET dataset 

 

E. Visualisation and analysis of test results 
In order to show the performance of the VAS-DETR 

model, this study visualises the detection results of 
VAS-DETR as well as models of the same magnitude on the 

NEU-DET dataset. The homogeneous models selected in 
this study include RT-DETR-R18, YOLOv11-m, 
YOLOv10-m, YOLOv9-m, YOLOv8-m, and YOLOv5-m.  

The visualisation results are shown in Figure 12. A 
class-by-class defect analysis found that there were 
omissions in the YOLO series in the crazing class example. 

The missing detection of YOLO series may be due to the 
fuzzy characteristics of this type of defect, and the model 
fails to capture relevant information effectively. Although 
RT-DETR is able to detect all defects in the image, it lacks 
in positioning accuracy. The detection frame generated by 
RT-DETR did not accurately describe the location of the 
defect, and the defect detection frame in the lower area of the 

image overlapped. This phenomenon may be due to the 
failure of the loss function to impose sufficient constraints 
on the redundant prediction in the process of supervising the 
decoder to generate the detection box. In contrast, the 
VAS-DETR model proposed in this study can not only 
detect two defects in the image, but also accurately depict 

the minimum external rectangle of the defect. This result 
shows that the optimization of RT-DETR model on feature 
extraction capability significantly improves its performance. 
RT-DETR effectively reduces the redundant prediction by 
improving the loss function, which makes the detection 
effect of the model more accurate and robust. 

In the inclusion category example, the defect is located 
in the bottom left edge of the image and is small in size. 
Compared with the visualization results of the other models, 
only VAS-DETR successfully detected the defect and had 
the highest confidence score. In the example of 
rolled-in_scale and patches categories, the VAS-DETR 

model was able to detect all defects completely despite the 

large number of defects and significant size differences. 
Based on the comparison of visual results of defects of 
inclusion, roll-in_scale and patches, it can be concluded that 
the VAS-DETR model is highly sensitive to defects of all 

dimensions. 
In the scratches category example, the scratches varied 

in size and depth. Not only did VAS-DETR successfully 
detect the small scratches missed by other models, but the 
confidence scores of VAS-DETR were higher than those of 
other models. In the example of pitted_surface category, the 

performance of the other five models is basically the same, 
except for one missing detection in YOLOv5m and 
YOLOv9-m, due to the obvious defect characteristics of this 
category. To sum up, it can be concluded that VAS-DETR 
model has excellent performance in the detection of various 
defects, and solves the problem of low accuracy of 
individual defects detection. 

In addition to displaying the performance of 
VAS-DETR in the above ways, this study also compared the 
visual results of the VAS-DETR and RT-DETR-R18 models 
through heat maps, as shown in Figure 13. The purpose of 
this analysis is to analyze the feature region of interest and 
localization performance of the model in defect detection 

and to verify the effectiveness of the optimization of 
RT-DETR-R18 in this paper. It is not difficult to see from 
Figure 13 that VAS-DETR has a more accurate focus area in 
crazing and inclusion defect detection, and the highlighted 
part can accurately cover the defect area. Some of the 
highlighted areas of RT-DETR-R18 deviate from the actual 

defects and some of the highlighted areas are mis-focused on 
complex backgrounds. VAS-DETR's heat map focuses on 
the defect itself and its background suppression and feature 
focus consistency are significantly better than that of 
RT-DETR-R18. VAS-DETR achieves optimal results in 
detecting defects of different sizes. 
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Fig. 12. Visual comparison of detection results 

 

 
Fig. 13. Comparison of Heatmap Results between VAS-DETR and RT-DETR-R18 Models 

 

IV. DISCUSSION 

The experimental results show that the VAS-DETR 
model proposed in this paper can significantly improve the 

accuracy of steel defect detection without increasing the 
amount of calculation. Ablation experiments verify the 
effectiveness of the loss functions of ERA Block, MSAF, 
MSFI and MPDIoU. These improvements play an important 
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role in improving the performance of the model. The 
comparison of the visual results of various defects proves 
that the VAS-DETR model has better performance for each 
kind of defects. The detection accuracy of crazing and 

pitted_surface defects in VAS-DETR model is significantly 
higher than that of RT-DETR-R18. This is sufficient to show 
that the VAS-DETR model proposed in this study reduces 
the influence of size difference on the detection accuracy. 

Although VAS-DETR showed significant advantages 
in detection performance, it still had some shortcomings. 

Compared with other models, the missing phenomenon of 
VAS-DETR has been greatly reduced, but there are some 
missing phenomena. As shown in Figure 1, scratches and 
roll-in_scale defects are still missed. This is why 
VAS-DETR only reduces the impact of size differences on 
accuracy rather than completely resolving the impact of size 

differences on accuracy. Future research will further 
optimize the feature extraction mechanism and focus on 
reducing the phenomenon of missing and false detection, so 
as to improve the generalization ability and robustness of the 
model in complex scenarios, so as to promote the 
development of the industrial defect detection field. 

 
Fig. 14. Examples of poor defect detection results 

 

V. CONCLUSION 

In this paper, an improved target detection algorithm 
VAS-DETR based on RT-DETR-R18 is proposed to solve 
the problem of low detection accuracy due to large size 

difference of steel surface quality defects. Firstly, the ERA 
Block module is introduced into the backbone network, 
which uses RepConv to realize the convolution design of 
separating the training phase from the inference phase. This 
allows the ERA Block module to improve the feature 
extraction capability of the overall network while reducing 

the amount of computation. The MSFI module combined 
with M2SA module enhances the model's ability to focus on 
various defects. The MSAF module can effectively expand 
the receptive field without increasing the amount of 
computation through the design of parallel cavity 
convolution, thus improving the multi-scale defect detection 

ability in the fusion of global and local information. The 
MPDIoU loss function is optimized for the deviation 
between the predicted frame and the real frame, which 
effectively alleviates the problem of insufficient overlap of 
boundary frames. 

In this study, a large number of experiments show that 

compared with RT-DETR, VAS-DETR improves the 
mAP50 and mAP50:95 by 3.93% and 4.58%, respectively, 
while GFLOPs and Parameters decrease by 12.74% and 
16.85%. The effectiveness of each module proposed in this 

study was further verified by ablation experiments. In 

comparison with the model of the same magnitude, 
VAS-DETR can show higher detection accuracy in the face 
of various defects of different sizes, and effectively reduce 
missed and false detection. Although the method proposed 

in this study can significantly improve the accuracy of the 
model, the deployment of edge devices with limited 
computing resources still faces certain challenges. The 
future research direction will focus on the further 
development of multi-scale defect detection and real-time 
detection algorithms. At the same time, it should also 

strengthen the deep integration with the production process 
to promote the more efficient and widespread detection of 
steel surface defects, which will have a profound impact on 
the steel industry and intelligent manufacturing. 
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