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Abstract—This paper proposes an adaptive fuzzy command
filtering control (CFC) approach for non-strict feedback
stochastic nonlinear systems with time-varying all-state
constraints and dead-zone inputs. A novel barrier Lyapunov
function (BLF) is employed to handle time-varying constraints
on all states. The nonlinear dead-zone input is decomposed into
a linear part and a bounded disturbance component, simplifying
the control design. A fuzzy logic system (FLS) approximates
unknown system nonlinearities, while a second-order fast
command filter resolves the ”complexity explosion” issue,
compensating filtering errors regardless of initial conditions.
By integrating backstepping and stochastic stability theory, the
designed adaptive command filter controller guarantees that
all closed-loop signals are semi-globally uniformly ultimately
bounded (SGUUB) in probability, and all states remain within
prescribed dynamic constraints. Moreover, the tracking error
converges to a small neighborhood near zero. Simulation
results confirm the effectiveness and robustness of the proposed
scheme.

Index Terms—Time-varying all-state constraint, dead-zone
input, fuzzy adaptive control, command filter

I. INTRODUCTION

W ITH the increasing complexity of modern industrial
systems, control strategies for stochastic nonlinear
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systems have become a prominent area in control science
research. Non-strict feedback stochastic nonlinear systems
represent a particular structure commonly encountered in
scenarios such as robot trajectory tracking, power system
stabilization, and aircraft attitude control [1–3]. Unlike strict
feedback systems, the nonlinear functions in these systems
depend not only on the current subsystem states but also
exhibit dynamic coupling with subsequent subsystems. This
coupling makes traditional recursive design methods like
backstepping ineffective due to the absence of explicit
analytic derivatives for virtual control variables. Moreover,
random disturbances—including white noise, colored noise,
and parameter jumps—further complicate stability analysis.
Although these disturbances are typically characterized
by Itô stochastic differential equations, a theoretical gap
remains between mean-square boundedness and practical
probabilistic constraints.

To address the challenges posed by non-strict feedback
structures, researchers have primarily proposed two
methodologies. One is approximation techniques based on
fuzzy logic or neural networks [4, 5]. The other involves
filtering approaches such as dynamic surface control (DSC)
or CFC [6, 7]. The former employs fuzzy rule bases or radial
basis function neural networks (RBFNN) to approximate
unknown nonlinearities. For example, the adaptive fuzzy
control method introduced by Tong et al. utilizes Lyapunov
stability theory for online adjustment of fuzzy parameters,
successfully achieving state tracking in non-strict feedback
systems [8]. The latter strategy incorporates low-pass
filters to avoid differentiating virtual control variables, thus
preventing the ”explosion of complexity” found in traditional
backstepping. Notably, the DSC framework proposed by
Zhou et al. significantly mitigates filter-induced delays
through error compensation mechanisms [9]. Although
both DSC and CFC utilize low-pass filters to circumvent
complexity explosion, CFC holds two main advantages.
First, DSC typically relies on fixed bandwidth filters, whose
phase lag can lead to cumulative tracking errors, posing
stability risks in non-strict feedback systems. In contrast,
CFC dynamically corrects filtered outputs via auxiliary
error compensation, substantially reducing steady-state
errors resulting from filter-induced delays. Second, CFC
effectively coordinates multiple constraints—including
all-state constraints, input saturation, and prescribed
performance—whereas DSC requires separate modules for
each constraint, increasing overall complexity. Reference
[10] explores adaptive fuzzy finite-time CFC for stochastic
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nonlinear systems with unknown dead-zone constraints and
unmodeled dynamics. Similarly, Reference [11] examines
finite-time adaptive constrained control for stochastic
flexible-joint robot (FJR) systems. By designing nonlinear
transformation functions dependent only on system outputs,
the challenges posed by asymmetric time-varying output
constraints are effectively handled, simplifying stability
analyses and relaxing initial condition restrictions.

In addition to these issues, actuator dead-zone inputs
and time-varying all-state constraints jointly exacerbate
control performance degradation risks [12–14]. Dead-zone
characteristics cause abrupt discontinuities in control
signals near zero, leading to cumulative steady-state
errors. Simultaneously, dynamic full-state constraints
demand controllers with enhanced adaptability to varying
boundaries, making traditional fixed-barrier methods
insufficient. Existing studies primarily tackle these problems
through two pathways [15–17]: one involves feedforward
compensation based on inverse dead-zone models—such as
the adaptive compensator by Wang et al., which dynamically
compensates asymmetric dead-zones by online estimation
of dead-zone parameters [18]; the other transforms state
constraints into dynamic inequality constraints using
time-varying barrier Lyapunov functions (TV-BLF). For
example, Ye et al.’s adaptive controller couples TV-BLF
with stochastic stability theory, effectively bounding state
constraint violations below a predefined probability threshold
[19]. Nevertheless, current methods still exhibit three critical
limitations. First, many dead-zone compensation schemes
assume known or symmetric dead-zone parameters,
which contrasts with real-world asymmetric, time-varying
dead-zone characteristics, thereby diminishing compensation
accuracy. Second, existing TV-BLF methods largely target
deterministic systems, inadequately addressing probabilistic
constraint violations induced by stochastic disturbances,
such as sensor noise or abrupt loads. Lastly, the coupling
between non-strict feedback structures, dead-zone inputs,
and dynamic constraints currently lacks a unified theoretical
framework, often compromising dynamic response speeds
for stability, failing to satisfy high-precision real-time
control requirements.

Motivated by the above challenges, this paper investigates
a class of non-strict feedback stochastic nonlinear systems
with uncertain dead-zone inputs and time-varying all-state
constraints, and proposes an adaptive command filtering
control approach. Simulation results demonstrate that all
signals in the closed-loop system achieve semi-global
uniform ultimate boundedness in probability, while
strictly adhering to the specified time-varying constraints.
Additionally, the system output effectively tracks a given
reference signal, with tracking errors converging into a
small neighborhood around zero. The primary contributions
of this work are summarized as follows:

(1) A novel barrier Lyapunov function (BLF) is designed
to guarantee adherence of all system states to time-varying
constraints. By decomposing the unknown dead-zone input
into a linear component and a bounded disturbance, the
interference from its nonlinear nature on controller design
is effectively addressed, enabling robust control under
asymmetric unknown dead-zone inputs.

(2) A second-order fast command filter is introduced to

eliminate the complexity explosion issue. The filter-induced
error is compensated through auxiliary error signals,
significantly improving the overall control accuracy and
disturbance rejection capabilities.

The remainder of this paper is structured as follows.
Section 2 describes the system model and preliminary results;
Section 3 and 4 present the controller design and stability
analysis; Section 5 provides simulation verification; and
Section 6 concludes the paper.

II. SYSTEM MODELING AND PRELIMINARIES

A. System description

Consider the following stochastic nonlinear system with
non-strict feedback:

dx1 = (x2 + f1(x) + d1(x)) dt+ hT
1 (x1)dω,

dxi = (xi+1 + fi(x) + di(x)) dt+ hT
i (x̄i)dω,

dxn = (u(v) + fn(x) + dn(x)) dt+ hT
n (x̄n)dω,

y = x1, i = 2, · · · , n− 1.

(1)

where u ∈ R and y ∈ R are the control input and
output, respectively. xi is the state of the stochastic nonlinear
system subject to the time-varying state constraint −ki1(t) <
xi < ki2(t), where ki1(t), ki2(t) are known smooth positive
functions. The functions fi(·) : Rn → R and hi(·) : Ri →
Rr (i = 1, 2, . . . , n) are unknown smooth functions. di(·) :
Rn → R represents an unknown bounded disturbance. Let
x̄i = [x1, x2, . . . , xi]

T ∈ Ri, and x = [x1, x2, . . . , xn]
T ∈

Rn. The process w(t) denotes a standard r-dimensional
independent Wiener process defined on a probability space
(Ω,F ,P), where Ω is the sample space, F is a σ-algebra,
and P is the probability measure.

The actual control input u(v) affected by a saturated
nonlinearity is defined as:

u = D(v) =


mr(v − cr), v ≥ cr,

0, cl < v < cr,

ml(v − cl), v ≤ cl,

(2)

where u ∈ R is the actual control signal affected by an
uncertain dead-zone. v ∈ R is the virtual control input to
be designed. D(·) is a piecewise function characterizing the
uncertain dead-zone.

Equation (2) can be rewritten as:

u = D(v) = mv + d(v), (3)

where m is the slope of the dead-zone and is piecewise
constant, and d(v) is the approximation error given by:

d(v) =


−mcr, v ≥ cr,

−mv, cl < v < cr,

−mcl, v ≤ cl.

(4)

The control objective is to design a fuzzy adaptive
control scheme based on a second-order fast command filter
for a non-strict feedback stochastic nonlinear system with
time-varying full-state constraints and dead-zone inputs. The
proposed method aims to achieve the following:

(1) All signals of the closed-loop system are SGUUB
in probability. Furthermore, the system states satisfy the
prescribed time-varying constraints.
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(2) The system output tracks a given reference signal,
and the tracking error converges to a small neighborhood
of zero. The proposed controller effectively compensates for
the uncertainties introduced by the dead-zone nonlinearity.

B. Preparation knowledge

In order to facilitate the design of the controller, some
necessary definitions and lemmas are introduced in this
section. Meanwhile, relevant assumptions and remarks are
also provided. First, consider the following stochastic
nonlinear system:

dx = F (x)dt+G(x)dω, (5)

where x ∈ Rn is the state variable of the system, ω is a
standard Wiener process, and F (·) ∈ Rn, G(·) ∈ Rn×r

satisfy the local Lip. condition. For any given scalar function
V (t, x), the stochastic differential of V is given by:

dV (t, x) = LV (t, x)dt+
∂V (t, x)

∂x
Gdω. (6)

Definition 1. For any function V (t, x) : R+ × Rn → R+,
define the infinitesimal generator L as:

LV =
∂V

∂x
F +

1

2
Tr

(
GT ∂2V

∂x2
G

)
, (7)

where Tr(·) denotes the trace of a matrix.

Lemma 1. For the stochastic nonlinear system in (5), if
there exists a positive definite, radially unbounded, and twice
continuously differentiable Lyap. function V (x) ∈ C2, then
there exist µ1, µ2 ∈ K∞ and constants α0 > 0, β0 > 0 such
that: {

µ1(∥x∥) ≤ V (x) ≤ µ2(∥x∥),
LV (x) ≤ −α0V (x) + β0.

(8)

Then for any x0 ∈ Rn, the system admits a unique
solution, and the state is bounded in probability:

E[V (x)] ≤ V (x0)e
−α0t +

β0

α0
, ∀t > t0. (9)

Lemma 2. For α, β ∈ R and any positive constants µ, ν, ε,
the following inequality holds:

|α|µ|β|ν ≤ µ

µ+ ν
ε|α|µ+ν +

ν

µ+ ν
ε−µ/ν |β|µ+ν . (10)

Lemma 3. Let f(X) be a continuous function on a compact
set ΨX ⊆ Rn. For any given constant ε∗ > 0, there exists a
fuzzy logic system y(X) = WTΦ(X) such that:

sup
X∈ΨX

∣∣f(X)−WTΦ(X)
∣∣ < ε∗, (11)

where W = [w1, w2, . . . , wN ]T is the weight vector and
Φ(X) = [p1(X), p2(X), . . . , pN (X)]T/

∑N
i=1 pi(X) is the

basis function vector. N > 1 is the number of fuzzy rules,
pi = exp[−(x − µi)

T(x − µi)/γ
2
i ] is a Gaussian basis

function, µi = [µi1, . . . , µin]
T is the center, and γi is the

width of the i-th basis function.

Lemma 4. For any x ∈ R satisfying |x| < kb, the following
inequality holds:

log

(
k4b

k4b − x4

)
≤ x4

k4b − x4
. (12)

Remark. Let e = k4b/(k
4
b −x4), then the inequality becomes

log e ≤ e − 1. Define f(e) = log e − e + 1, then f ′(e) =
1/e − 1. Since f ′(e) = 0 at e = 1, f ′(e) > 0 when e < 1,
and f ′(e) < 0 when e > 1, we conclude that f(e) attains
its maximum at e = 1 with f(1) = 0. Hence, the inequality
holds for all |x| < kb.

Lemma 5. Define a second-order command filter as follows:
ẇi = ζi,1,

ζi,1 = −ζ|wi − αi−1|1/2sign(wi − αi−1) + ζi,2,

ζ̇i,2 = −ζmsign(ζi,2 − ζi,1), i = 1, 2, . . . , n.

(13)

Remark. Here, αi−1 is the virtual control rate (input), wi

is the command filter output. ζ, ζm are filter parameters.
Initial conditions are wi(0) = αi−1(0) and ζi,2(0) = 0. The
command filter helps alleviate the explosion of complexity in
backstepping designs and simplifies the controller design.

Assumption II.1. The desired trajectory xd and its i-th
derivative x

(i)
d are assumed to be continuously differentiable

and bounded.

Assumption II.2. The parameters of the dead-zone
nonlinearity cr, cl,mr,ml are unknown but bounded. Their
signs are known: cr > 0, cl < 0, mr > 0, ml > 0.

Assumption II.3. The disturbance functions |di(x)| ≤ d̄i,
i = 1, 2, . . . , n, where d̄i are unknown positive constants.

Remark. Assumption 1 ensures boundedness and
smoothness of the reference signal and its derivatives,
which is realistic in engineering practice. Assumption 2
guarantees that the dead-zone parameters are bounded,
which follows from the expression of d(v) in (4). Assumption
3 ensures that system uncertainties are bounded, which is a
common condition in robust control theory.

III. CONTROLLER DESIGN

In this section, we design an adaptive fuzzy controller.
Based on the backstepping method and a command filter,
the stochastic nonlinear system (1) with dead-zone input
is ensured to satisfy time-varying full-state constraints. A
second-order fast command filter is introduced to reduce
the computational burden caused by recursive differentiation
of virtual controls and improve control performance.
Furthermore, to enhance control accuracy, a filter error
compensation device is incorporated.

The following coordinate transformations are considered:
w1 = xd,

zi = xi − wi,

ξi = zi − ri, i = 1, 2, . . . , n.

(14)

where xi is the state variable of the system, xd is the given
reference signal, zi is the tracking error, wi is the output of
the command filter, and ri is the error compensation signal
of the command filter.

Step 1: According to the coordinate transformations in
(14) and system (1), we have:

dξ1 = dz1 − ṙ1dt

= (x2 + f1(x) + d1(x)− ẋd − ṙ1) dt+ hT
1 dω. (15)
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Select the following Lyap. function:

V1 =
1

4
log

(
k4b1

k4b1 − ξ41

)
+

1

2
r21 +

1

2γ1
θ̃21, (16)

where kb1(t) is the upper bound function of ξ1(t) defined on
the set Ωξ1 = {ξ1(t) | |ξ1(t)| < kb1(t)}, θ̃1 = θ1 − θ̂1 is the
parameter estimation error, and γ1 > 0 is a design parameter.

By Definition 1 and Eq. (14), the infinitesimal operator of
V1 is given by:

LV1 =
ξ31

k4b1 − ξ41
(ξ2 + w2 − α1 + α1 + r2 + f1

+d1 − ẋd − ṙ1 +
ξ1k̇b1
kb1

)

+
ξ21(3k

4
b1 + ξ41)

2(k4b1 − ξ41)
2
∥h1∥2 + r1ṙ1 −

1

γ1
θ̃1

˙̂
θ1. (17)

According to Lemma 2 and Assumption 3, the following
inequalities hold:

ξ31ξ2
k4b1 − ξ41

≤ 3

4
ξ41(k

4
b1 − ξ41)

−4/3 +
1

4
ξ42 , (18)

ξ31d1
k4b1 − ξ41

≤ 3

4
ξ41(k

4
b1 − ξ41)

−4/3 +
1

4
d
4

1, (19)

ξ21(3k
4
b1 + ξ41)

2(k4b1 − ξ41)
2
∥h1∥2 ≤ ξ41(3k

4
b1 + ξ41)

2∥h1∥4

4l21(k
4
b1 − ξ41)

4
+

1

4
l21. (20)

Substituting Eqs. (18)–(20) into (17), we obtain:

LV1 ≤ ξ31
k4b1 − ξ41

(
w2 − α1 + α1 + r2 − ẋd − ṙ1

+
3

2
ξ1(k

4
b1 − ξ41)

−1/3

+
ξ1(3k

4
b1 + ξ41)

2

4l1
(k4b1 − ξ41)

−3∥l1∥4

+
ξ1k̇b1
kb1

)
+

1

4
d
4

1 +
1

4
l21 + r1ṙ1

− 1

γ1
θ̃1

˙̂
θ1 +

1

4
ξ42 . (21)

As f1(·) contains an unknown nonlinear term that cannot
be directly canceled, we construct an unknown smooth
function as:

T1(Z1) = f1 +
3

2
ξ1(k

4
b1 − ξ41)

−1/3

+
ξ1(3k

4
b1 + ξ41)

2

4l1
(k4b1 − ξ41)

−3∥l1∥4,

and approximate T1(Z1) using a fuzzy logic system:

T1(Z1) = WT
1 Φ1(Z1) + ε1(Z1), |ε1(Z1)| ≤ ε∗1, (22)

where Z1 = [x, xd, ẋd, ξ1]
T, and ε1(Z1) is the approximation

error bounded by ε∗1 > 0.

Given that 0 < ΦT(·)Φ(·) < 1, from Lemma 2:

ξ31
k4b1 − ξ41

T1(Z1) ≤
θ1ξ

6
1Φ

T
1 (Z1)Φ1(Z1)

2a21(k
4
b1 − ξ41)

2ΦT
1 (X1)Φ1(X1)

+
1

2
a21Φ

T
1 (X1)Φ1(X1)

+
ξ41

4(k4b1 − ξ41)
4/3

+
1

4
ε∗41

≤ θ1ξ
6
1

2a21(k
4
b1 − ξ41)

2ΦT
1 (X1)Φ1(X1)

+
1

2
a21

+
ξ41

4(k4b1 − ξ41)
4/3

+
1

4
ε∗41 , (23)

where θ1 = ∥W1∥2, X1 = [x1, xd, ẋd, ξ1]
T, and a1 > 0 is a

design parameter.
Substituting Eq. (23) into (21), we finally obtain:

LV1 ≤ ξ31
k4b1 − ξ41

(
w2 + r2 − ẋd − ṙ1 +

3

4
ξ1(k

4
b1 − ξ41)

1/3

+
θ1ξ

3
1

2a21(k
4
b1 − ξ41)Φ

T
1 Φ1

+
ξ1k̇b1
kb1

)
+

1

4
d
4

1 +
1

4
l21

+
1

4
ε∗21 +

1

2
a21 + r1ṙ1 −

1

γ1
θ̃1

˙̂
θ1 +

1

4
ξ42 . (24)

The virtual control law α1, the error compensation signal
ṙ1, and the parameter adaptive update rate ˙̂

θ1 are designed
as:

α1 = − c1z1 −
θ̂1ξ

3
1

2a21(k
4
b1 − ξ41)Φ

T
1 Φ1

+ ẋd

− 3

4
ξ1(k

4
b1 − ξ41)

−1/3 − ξ1k̇b1
kb1

. (25)

ṙ1 = (ω2 − α1 + r2)− c1r1. (26)

˙̂
θ1 =

γ1ξ
6
1

2a21(k
4
b1 − ξ41)

2ΦT
1 Φ1

− σ1θ̂1. (27)

The design parameters satisfy κ1 > 0, c1 > 0, and σ1 > 0.
Through equations (25)–(27), equation (24) can be written
as:

LV1 ≤ − c1ξ
4
1

k4b1 − ξ41
+ r1(ω2 − α1) + r1r2 − c1r

2
1

+
σ1

γ1
θ̃1θ̂1 +

1

4
ξ42 + ρ1, (28)

where
ρ1 =

1

4
d
4

1 +
1

4
l21 +

1

4
ε∗21 +

1

2
a21 > 0.

It should be noted that the term 1
4ξ

4
2 will be dealt with in

the next step.

Step i (2 ≤ i ≤ n − 1): According to the coordinate
transformation in formulas (14) and (1), we have:

dξi = dzi − ṙidt

= (xi+1 + fi(x) + di(x)− ẇi − ṙi) dt+ hT
i dω. (29)

Select the following Lyapunov function:

Vi = Vi−1 +
1

4
log

(
k4bi

k4bi − ξ4i

)
+

1

2
r2i +

1

2γi
θ̃2i , (30)
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where kbi(t) is the upper bound function of ξi(t) defined in
the set

Ωξi = {ξi(t) | |ξi(t)| < kbi(t)} .

Here, θ̃i = θi − θ̂i is the parameter estimation error, θ̂i is
the estimate of θi, and γi > 0 is the design parameter.

By Definition 1 and formula (14), we can see that the
differential operator of formula (30) is:

LVi = LVi−1 +
ξ3i

k4bi − ξ4i

(
ξi+1 + wi+1 − αi + αi + ri+1

+ fi + di − ẇi − ṙi +
ξik̇bi
kbi

)
+

ξ2i (3k
4
bi + ξ4i )

2(k4bi − ξ4i )
2
∥hi∥2 + riṙi −

1

γi
θ̃i
˙̂
θi. (31)

According to Lemma 2 and Assumption 3, the following
inequality holds:

ξ3i ξi+1

k4bi − ξ4i
≤ 3

4
ξ4i (k

4
bi − ξ4i )

−4/3 +
1

4
ξ4i+1, (32)

ξ3i di
k4bi − ξ4i

≤ 3

4
ξ4i (k

4
bi − ξ4i )

−4/3 +
1

4
d
4

i , (33)

ξ2i (3k
4
bi + ξ4i )

2(k4bi − ξ4i )
2
∥hi∥2 ≤ ξ4i (3k

4
bi + ξ4i )

2∥hi∥4

4l2i (k
4
bi − ξ4i )

4
+

1

4
l2i . (34)

Substituting formula (32)-formula (34) into formula (31),
we can get:

LVi ≤ LVi−1 +
ξ3i

k4bi − ξ4i

(
wi+1 − αi + αi + ri+1

+ fi − ẇi − ṙi +
3

2
ξi(k

4
bi − ξ4i )

−1/3

+
ξi(3k

4
bi + ξ4i )

2

4li(k4bi − ξ4i )
3
∥hi∥4 +

ξik̇bi
kbi

)
+

1

4
d
4

i +
1

4
l2i + riṙi −

1

γi
θ̃i
˙̂
θi +

1

4
ξ4i+1. (35)

As there is an unknown nonlinear term in Fi(·), which
cannot be directly eliminated, an unknown smooth function
is constructed as:

Ti(Zi) = fi − ẇi +
3

2
ξi
(
k4bi − ξ4i

)−1/3

+
ξi(3k

4
bi + ξ4i )

2

4li

(
k4bi − ξ4i

)−3 ∥hi∥4,

where fuzzy logic system is used to approximate Ti(Zi), and
Zi = [x,wi, ẇi, ξi]

T . According to Lemma 3:

Ti(Zi) = WT
i Φi(Zi) + εi(Zi), |εi(Zi)| ≤ ε∗i , (36)

where εi(Zi) is the approximation error and ε∗i > 0 is its

upper bound. Since 0 < ΦT (·)Φ(·) < 1, Lemma 2 gives:

ξ3i
k4bi − ξ4i

Ti(Zi) ≤
θiξ

6
iΦ

T
i (Zi)Φi(Zi)

2a2i (k
4
bi − ξ4i )

2ΦT
i (Xi)Φi(Xi)

+
1

2
a2iΦ

T
i (Xi)Φi(Xi)

+
ξ4i

4(k4bi − ξ4i )
4/3

+
1

4
ε∗4i

≤ θiξ
6
i

2a2i (k
4
bi − ξ4i )

2ΦT
i (Xi)Φi(Xi)

+
1

2
a2i

+
ξ4i

4(k4bi − ξ4i )
4/3

+
1

4
ε∗4i , (37)

where θi = ∥Wi∥2 and Xi = [xi, wi, ẇi, ξi]
T . The design

parameter ai > 0.
Substituting inequality (37) into (35), we obtain:

LVi ≤ LVi−1 +
ξ3i

k4bi − ξ4i

(
wi+1 − αi + αi + ri+1 − ṙi

+
3

4
ξi(k

4
bi − ξ4i )

1/3 +
θiξ

3
i

2a2i (k
4
bi − ξ4i )Φ

T
i Φi

+
ξik̇bi
kbi

)
+

1

4
d
4

i +
1

4
l2i +

1

4
ε∗2i +

1

2
a2i

+ riṙi −
1

γi
θ̃i
˙̂
θi +

1

4
ξ4i+1. (38)

The virtual control law αi, the error compensation signal
ṙi, and the parameter adaptive update rate ˙̂

θi are designed
as:

αi = − cizi −
θ̂iξ

3
i

2a2i (k
4
bi − ξ4i )Φ

T
i Φi

− 1

4
ξi(k

4
bi − ξ4i )

− 3

4
ξi(k

4
bi − ξ4i )

−1/3 − ξik̇bi
kbi

. (39)

ṙi = (ωi+1 − αi + ri+1)− ciri. (40)

˙̂
θi =

γiξ
6
i

2a2i (k
4
bi − ξ4i )

2ΦT
i Φi

− σiθ̂i. (41)

The design parameters satisfy κi > 0, ci > 0, and σi > 0.
Through equations (39)–(41), equation (38) can be rewritten
as:

LVi ≤ −
i∑

j=1

cjξ
4
j

k4bj − ξ4bj
+

i∑
j=1

rj(ωj+1 − αj) +
i∑

j=1

rjrj+1

−
i∑

j=1

cjr
2
j +

i∑
j=1

σj

γj
θ̃j θ̂j +

1

4
ξ4i+1 +

i∑
j=1

ρj , (42)

where
ρj =

1

4
d
4

j +
1

4
l2j +

1

4
ε∗2j +

1

2
a2j > 0.

It should be noted that the term 1
4ξ

4
i+1 will be dealt with

in the next step.
Step n: According to the coordinate transformation in

formulas (1) and (14), we obtain:

dξn = dzn − ṙndt

= (u(ν) + fn(x) + dn(x)− ẇn − ṙn) dt+ hT
ndω.

(43)

Engineering Letters

Volume 33, Issue 9, September 2025, Pages 3883-3894

 
______________________________________________________________________________________ 



Select the following Lyapunov function:

Vn = Vn−1 +
1

4
log

(
k4bn

k4bn − ξ4n

)
+

1

2
r2n +

1

2γn
θ̃2n, (44)

where kbn(t) is the upper bound function of ξn(t) defined
in the set Ωξn = {ξn(t) | |ξn(t)| < kbn(t)}. θ̃n = θn− θ̂n is
the parameter estimation error, θ̂n is the estimate of θn, and
γn > 0 is a design parameter.

By Definition 1 and formula (14), the differential operator
of formula (44) is:

LVn = LVn−1 +
ξ3n

k4bn − ξ4n

(
mν + d(ν) + fn + dn

− ẇn − ṙn +
ξnk̇bn
kbn

)
+

ξ2n(3k
4
bn + ξ4n)

2(k4bn − ξ4n)
2
∥hn∥2 + rnṙn − 1

γn
θ̃n

˙̂
θn. (45)

According to Lemma 2 and Assumption 3, the following
inequalities hold:

ξ3nd(ν)

k4bn − ξ4n
≤ 3

4
ξ4n(k

4
bn − ξ4n)

−4/3 +
1

4
d
4
, (46)

ξ3ndn
k4bn − ξ4n

≤ 3

4
ξ4n(k

4
bn − ξ4n)

−4/3 +
1

4
d
4

n, (47)

ξ2n(3k
4
bn + ξ4n)

2(k4bn − ξ4n)
2
∥hn∥2 ≤ ξ4n(3k

4
bn + ξ4n)

2∥hn∥4

4l2n(k
4
bn − ξ4n)

4
+

1

4
l2n.

(48)

Substituting formulas (46)–(48) into formula (45), we
obtain:

LVn ≤ LVn−1 +
ξ3n

k4bn − ξ4n

(
mν + fn − ẇn − ṙn

+
3

2
ξn(k

4
bn − ξ4n)

−1/3

+
ξn(3k

4
bn + ξ4n)

2

4ln
(k4bn − ξ4n)

−3∥hn∥4 +
ξnk̇bn
kbn

)
+

1

4
d
4

n +
1

4
l2n + rnṙn − 1

γn
θ̃n

˙̂
θn +

1

4
d
4
. (49)

As there is an unknown nonlinear term in Fn(·) which
cannot be directly eliminated, an unknown smooth function
is constructed as:

Tn(Zn) = fn − ẇn +
3

2
ξn(k

4
bn − ξ4n)

1/3

+
ξn(3k

4
bn + ξ4n)

2

4ln
(k4bn − ξ4n)

−3∥hn∥4.

Using a fuzzy logic system to approximate Tn(Zn) with
Zn = [x,wn, ẇn, ξn]

T , and according to Lemma 3:

Tn(Zn) = WT
n Φn(Zn) + εn(Zn), |εn(Zn)| ≤ ε∗n, (50)

where εn(Zn) is the approximation error and ε∗n > 0 its
upper bound.

Since 0 < ΦT (·)Φ(·) < 1, Lemma 2 implies:

ξ3n
k4bn − ξ4n

Tn(Zn) ≤
θnξ

6
nΦ

T
n (Zn)Φn(Zn)

2a2n(k
4
bn − ξ4n)

2ΦT
n (Xn)Φn(Xn)

+
1

2
a2nΦ

T
n (Xn)Φn(Xn)

+
ξ4n

4(k4bn − ξ4n)
4/3

+
1

4
ε4n

≤ θnξ
6
n

2a2n(k
4
bn − ξ4n)

2ΦT
n (Xn)Φn(Xn)

+
1

2
a2n +

ξ4n
4(k4bn − ξ4n)

4/3
+

1

4
ε∗4n ,

(51)

where θn = ∥Wn∥2, Xn = [xn, wn, ẇn, ξn]
T , and an > 0.

Substituting formula (51) into (49), we obtain:

LVn ≤ LVn−1 +
ξ3n

k4bn − ξ4n

(
mν − ṙn +

3

4
ξn(k

4
bn − ξ4n)

−1/3

+
θnξ

3
n

2a2n(k
4
bn − ξ4n)Φ

T
nΦn

+
ξnk̇bn
kbn

)
+

1

4
d
4

n +
1

4
l2n +

1

4
ε∗2n +

1

2
a2n

+ rnṙn − 1

γn
θ̃n

˙̂
θn +

1

4
d
4
. (52)

The virtual control law αn, the error compensation signal
ṙn, and the parameter adaptive update law ˙̂

θn are designed
as:

ν =
1

m

(
− cnzn − θ̂nξ

3
n

2a2n(k
4
bn − ξ4n)Φ

T
nΦn

− 1

4
ξn(k

4
bn − ξ4n)−

3

4
ξn(k

4
bn − ξ4n)

−1/3 − ξnk̇bn
kbn

)
,

(53)

ṙn = −cnrn, (54)

˙̂
θn =

γnξ
6
m

2a2n(k
4
bn − ξ4n)

2ΦT
nΦn

− σnθ̂n. (55)

The design parameters satisfy κn > 0, cn > 0, and σn >
0. Substituting (53)–(55) into (52) yields:

LVn ≤ −
n∑

j=1

cjξ
4
j

k4bj − ξ4bj
+

n−1∑
j=1

rj(ωj+1 − αj)

+
n−1∑
j=1

rjrj+1 −
n∑

j=1

cjr
2
j +

n∑
j=1

σj

γj
θ̃j θ̂j

+
n∑

j=1

ρj +
1

4
d4, (56)

where ρj =
1
4d

4

j +
1
4 l

2
j +

1
4ε

∗2
j + 1

2a
2
j > 0.

IV. STABILITY ANALYSIS

Theorem 1: Consider a class of stochastic nonlinear
systems with dead-time input and non-strict feedback (1).
On the premise that the above assumptions hold and
the initial state of the system meets xi (0) ∈ Ωxi

=
{xi ||xi (0)| ≤ kci(t)} , i = 1, 2, · · · , n, the control rates
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(25), (39) and (53), parameter update rates (27), (41) and
(55), and error compensation signals (26), (40) and (54)
are selected. Then, all closed-loop signals can be guaranteed
to be semiglobally uniform and ultimately bounded with
the probability of a quarter of a moment of an appropriate
compact set, and all states of the system xi satisfy
the predefined time-varying constraint |xi| ≤ kci(t). The
tracking error of the system can converge to a small expected
neighborhood. The initial value of the residual error signal a
satisfies:

Ψξi =

{
ξi

∣∣∣∣∣ |ξi (0)| ≤ kbi
4

√
1− e

−
(
4Vi(0)+

4β0
α0

)}
. (57)

Proof: Select the following Lyapunov function:

Vn = Vn−1 +
1

4
log

(
k4bn

k4bn − ξ4n

)
+

1

2
r2n +

1

2γn
θ̃2n. (58)

According to the analysis in the previous section, the
differential operator of equation (58) is:

LVn ≤ −
n∑

j=1

cjξ
4
j

k4bj − ξ4bj
+

n−1∑
j=1

rj(ωj+1 − αj) +
n−1∑
j=1

rjrj+1

−
n∑

j=1

cjr
2
j +

n∑
j=1

σj

γj
θ̃j θ̂j +

n∑
j=1

ρj +
1

4
d4. (59)

In order to unify the form of the error compensation signal,
according to Lemma 2:

n−1∑
j=1

rjrj+1 ≤
n−1∑
j=1

r2j
2

+
n−1∑
j=1

r2j+1

2
≤

n∑
j=1

r2j . (60)

According to the boundedness theorem in the
literature [20], we have:

|wj+1 − αj | ≤ Ξj . (61)

Further, according to Lemma 2:
n−1∑
j=1

rj(wj+1 − αj) ≤
n−1∑
j=1

r2j
2

+
n−1∑
j=1

Ξ2
j

2

≤
n∑

j=1

r2j
2

+
n∑

j=1

Ξ2
j

2
. (62)

Substituting formulas (60)–(62) into (59), we obtain:

LVn ≤ −
n∑

j=1

cjξ
4
j

k4bj − ξ4bj
−

n∑
j=1

(
cj −

3

2

)
r2j +

n∑
j=1

σj

γj
θ̃j θ̂j

+
n∑

j=1

ρj +
1

4
d4 +

n∑
j=1

Ξ2
j

2
. (63)

According to Lemma 2 and the identity θ̃j = θj − θ̂j , we
have:

θ̃j θ̂j = θ̃j(θj − θ̃j) ≤
θ2j
2

−
θ̃2j
2
. (64)

Substituting (64) into (63), and according to Lemma 4:

LVn ≤ −
n∑

j=1

cjξ
4
j

k4bj − ξ4bj
−

n∑
j=1

(
cj −

3

2

)
r2j +

n∑
j=1

σj θ̃
2
j

2γj

+
n∑

j=1

ρj +
1

4
d4 +

n∑
j=1

Ξ2
j

2
+

n∑
j=1

σjθ
2
j

2γj

≤ α0Vn + β0. (65)

where

α0 = min

{
4cj , 2(cj −

3

2
), σj , j = 1, 2, . . . , n

}
,

β0 =
n∑

j=1

ρj +
1

4
d4 +

n∑
j=1

Ξ2
j

2
+

n∑
j=1

σjθ
2
j

2γj
. (66)

Since the parameter selection must satisfy α0 > 0 and
β0 > 0, it is required that cj > 0, cj > 3

2 , σj > 0, and
ρj > 0. According to Lemma 1:

0 ≤ E[V (t)] ≤ E[V (0)]e−α0t +
α0

β0
, ∀t > t0. (67)

From equations (58) and (67), it follows that:

1

4
log

(
k4bi

k4bi − ξ4i

)
≤ E[V (0)]e−α0t +

α0

β0
. (68)

Further, we obtain:

|ξi(0)| ≤ kbi
4

√
1− e

−
(
4Vi(0)+

4β0
α0

)
. (69)

Remark. According to the above theorem, the residual error
signal ξi, the compensation signal ri, and the parameter
estimation error θ̃i are bounded. Given that ξi = zi + ri,
the error signal zi is also bounded. Since the unknown
parameter θi is constant, its estimation θ̂i is bounded, thus
the virtual control rate αi−1 is bounded. Consequently, the
filtered signal wi is bounded, and finally the state variable
xi = zi + wi of the system is also bounded.

In order to understand the design flow of the control
algorithm, the following is the control flow chart in Fig 1.

Fig. 1. Control flow chart of the control method in this script
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V. SIMULATION EXAMPLE

A. Comparative analysis with existing methods

In order to verify the effectiveness of the proposed control
scheme, consider the following non-strict feedback stochastic
nonlinear system with dead-zone input:



dx1 = (x1 + 0.2(x2 + x3) + cos(x2)) dt

+ 0.3(0.2 + sin(x1))dw,

dx2 = (x2 + 0.1 cos((x1 + x3)x2) + sin(x1x3)) dt

+ 0.3x1x2dw,

dx3 = (u+ x2x3 + sin(x2) cos(x1)) dt

+ 0.1(1 + cos(x3))dw,

y = x1.

Here, x1, x2 are the state variables, and u, y represent the
control input and system output. The tracking signal is xd =
0.4 sin(t). The system function components are summarized
in Table I.

TABLE I
STOCHASTIC NONLINEAR SYSTEM FUNCTIONS

Component fi Component di Component hi

0.2(x2 + x3) cos(x2) 0.3(0.2 + sin(x1))
0.1 cos((x1 + x3)x2) sin(x1x3) 0.3x1x2

x2x3 sin(x2) cos(x1) 0.1(1 + cos(x3))

To achieve the control objectives, the time-varying state
constraints are set as follows: kc1 = 4 + 0.3 sin(0.22t),
kc2 = 4 + sin(t), and kc3 = 6.5 + 2 sin(2t). Dead-zone
input parameters are cr = 0.4, cl = −1.9, mr = 1, and
ml = 1.2. The system parameters and initial conditions are
shown in Table II.

TABLE II
DESIGN PARAMETERS AND INITIAL STATES

Parameter Group 1 Parameter Group 2 Initial Conditions

k1 = k2 = k3 = 5.7 a1 = a2 = a3 = 2 θ(0) = [0.25, 1.1, 0.5]T

σ1 = σ2 = σ3 = 0.1 γ1 = γ2 = γ3 = 1 x(0) = [0.01, 0.01, 0.01]T

kb1(t) = 3.4 + 0.2 sin(t) h1 = h2 = h3 = 20 r(0) = [0.1, 0.1, 0.1]T

kb2 = 3.9 + 0.9 sin(t) kb3 = 6.5 + sin(2t) w(0) = [0, 0, 0]T

Under the same initial conditions and constraints, the
control scheme proposed in this paper is compared with
the following two control schemes: Hu and Liu [21]
prevents ”differential explosion” by introducing a first-order
filter, and adopts coordinate transformation and backstepping
control strategy to deal with the performance function.
Although the design steps and calculation amount of the
controller are simplified, the order of the adopted filter
is low, and there is no filter error compensation function.
Compared with the second-order fast command filter (13)
proposed in this chapter, the control accuracy of the system
may be slightly insufficient. Wei and Li [22] proposes a
backstepping control strategy based on second-order fast
command filtering and traditional nonlinear transformation.
Nonlinear transformation is used to deal with time-varying
state constraints, and new variables are introduced for system
transformation, and complex transformation conditions must
be met between old and new variables. Compared with the

control strategy proposed in this paper, it is more complicated
and even leads to deterioration of the stability of the system.

Fig 2 shows the tracking of the system output signal to a
given reference signal under three control schemes. It can be
seen that the control method proposed in this paper has good
tracking performance and excellent system tracking accuracy.
In reference [21], its accuracy is not as good as the method
proposed in this paper, because the speed of the first-order
filter it uses is slow, and compared with the command
filter, it has no filtering error compensation function. In
reference [22], although the second-order fast filter is used,
the traditional performance function processing method is
extremely complicated, which leads to poor stability of the
system output. At the same time, the output trajectories of
the system under the three control schemes are all within the
time-varying state constraints.

0 10 20 30

Time(s)

-10

-5

0

5

10

0 0.5 1

0
0.2
0.4

0 1 2 3
-1
0
1

Fig. 2. Output signal x1 and tracking signal xd under the constraint of
time-varying state
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Fig. 3. State of the system x2 under the constraint of time-varying state

Figs 3-4 show the change curves of system states x2 and
x3 under three control schemes. It can be seen that the control
method proposed in this paper and in reference [21] is more
stable than the control method proposed in reference [22].
At the same time, the trajectories of the states of the system
x2 and x3 under the three control schemes are all within the
state constraints. Fig 5 is the curve of the adaptive parameter
update rate, which reflects the online estimation process of
unknown parameters in the system. It can be seen that their
values are all greater than 0, which is in accordance with the
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Fig. 4. State of the system x3 under the constraint of time-varying state
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Fig. 5. Adjustment of parameters θ̂1, θ̂2 and θ̂2

parameter form given in this paper. Fig 6 is the variation
curve of the error compensation signals r1, r2, r3, which
reflects the online compensation process of filtering error
wi+1 − αi in the system.

Fig 7 shows the change curves of the virtual control signal
and the actual control signal. It can be seen that when the
virtual control signal is greater than 0.4, the actual control
signal after inputting the dead-time function is: When the
virtual control signal is within the range of, the actual control
signal after inputting the dead zone function is: When the
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Fig. 6. Error compensation signals r1, r2 and r3
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Fig. 7. Actual control signal u and virtual control signal v

virtual control signal is less than −1.9, the actual control
signal is less than after entering the dead-zone function. The
control input signal of the system has a slight jitter at first,
which is because the uncertain stochastic nonlinear system is
selected in this paper, and random disturbance and uncertain
disturbance will occur.

B. Engineering case study with stochastic constraints

To evaluate the effectiveness of the proposed control
strategy, a simulation is conducted on a single-link
manipulator driven by a brushed DC motor (BRDCM).
The trajectory tracking problem is formulated based on the
dynamic model described in [23–25]:{

Mq̈ +Bq̇ +N sin(q) = I +D1,

Lİ +RI +Kbq̇ = u.
(70)

where q, q̇, and q̈ represent the angular position, velocity, and
acceleration of the manipulator link, respectively. I denotes
the armature current of the motor, and u is the actual control
input. Defining x1 = q, x2 = q̇, and x3 = I , the model can
be rewritten in state-space form as:


ẋ1 = x2,

ẋ2 =
1

M
(−Bx2 + x3 −N sin(x1) +D1),

ẋ3 =
1

L
(u−Rx3 −Kbx2).

(71)

The system output is defined as y = x1. The physical
parameters are selected as M = 1, B = 1, N = 2, L = 1,
R = 1, and Kb = 2.

To assess control performance in the presence of stochastic
disturbances, the corresponding stochastic nonlinear system
is given by:



dx1 = (x2 + 0.2 sin(x1x2x3)) dt+ 0.15 cos(x1)dω,

dx2 = (x3 − 2 sin(x1)− x2 + 0.2 cos(x2x3)) dt

+ sin(0.4x1x2)dω,

dx3 = (−2x2 − x3 + x3 cos(x1x2) + u(v)) dt

+ 0.1 sin(x3)dω,

y = x1.
(72)
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Here, x1, x2, and x3 are the system states, v is the
virtual control input, u is the actual control input, and y
is the system output. The reference trajectory is defined as
xd = sin(0.2t)+0.2 sin(t). The stochastic disturbance terms
are: d1 = 0, d2 = 0.2 cos(x2x3), and d3 = x3 cos(x1x2).

The fuzzy membership function is expressed as:

uF l
i
(Xi) = exp

[
−1

2
(Xi + 4− l)2

]
,

i = 1, 2, 3, l = 1, 2, . . . , 7. (73)

The corresponding fuzzy basis function is given by:

φl(Xi) =

n∏
i=1

uF l
i
(Xi)

N∑
l=1

(
n∏

i=1

uF l
i
(Xi)

) ,

i = 1, 2, 3, l = 1, 2, . . . , 7. (74)

To satisfy time-varying state constraints, the upper bounds
are set as:

kc1 = 2+0.1 sin(t), kc2 = 2.5+sin(t), kc3 = 2+2 sin(2t)

The parameters for the dead-zone nonlinearity are
specified as:

cr = 1, cl = −3, mr = 1.5, ml = 2

The remaining simulation parameters and initial conditions
are listed in Table III.

TABLE III
DESIGN PARAMETERS AND INITIAL STATE

Design Parameters 1 Design Parameters 2 Initial State

k1 = k2 = k3 = 5 a1 = a2 = a3 = 7 [θ1(0), θ2(0), θ3(0)]
T = [0.25, 1.1, 0.5]T

h1 = h2 = h3 = 25 γ1 = γ2 = γ3 = 1 [x1(0), x2(0), x3(0)]
T = [0.0, 0.1, 0.1]T

σ1 = 1, σ2 = 1.2, σ3 = 1.4 kb1 = 1.6− 0.1 sin(t) [ω1(0), ω2(0), ω3(0)]
T = [0, 0, 0]T

kb2 = 1.5 + 0.5 sin(t) kb3 = 2 + sin(2t) [r1(0), r2(0), r3(0)]
T = [0.1, 1.0, 0.1]T
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Fig. 8. Tracking performance of the output x1 and reference xd under
time-varying constraints

The simulation results are illustrated in Figures 8–13.
Figure 8 presents the trajectory tracking behavior of the
system output x1 with respect to the reference signal xd

under time-varying state constraints. The output remains
confined within the prescribed limits and exhibits accurate
tracking. When the initial state is close to the reference, the
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Fig. 9. System state x2 response under time-varying constraint conditions
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Fig. 10. System state x3 response under time-varying constraint conditions

convergence speed improves and the system demonstrates
stronger resistance to external disturbances.

Figures 9 and 10 depict the dynamic responses of
the state variables x2 and x3, respectively. Both state
trajectories consistently evolve within their respective
time-dependent boundaries, without exceeding constraint
limits. This validates the robustness of the proposed control
strategy in enforcing state constraints. Minor fluctuations are
observable in the curves, which can be attributed to the
stochastic nature of the system. These oscillations arise from
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Fig. 11. Error compensation signals: r1, r2, and r3
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internal nonlinear interactions and uncertainty factors, but
their amplitudes remain minimal and are confined within
acceptable bounds, ensuring that overall system performance
is not compromised.

Figure 11 shows the evolution of the error compensation
signals r1, r2, and r3, which are designed to mitigate
filtering errors introduced by the command filter. While
command filtering effectively smooths control signals and
suppresses high-frequency noise, it can introduce lag-induced
deviations. These compensation terms dynamically correct
such deviations, thereby enhancing the precision of the
filtered commands and contributing to reliable control
performance.
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Fig. 12. Adaptive parameter estimates: θ̂1, θ̂2, and θ̂3

Figure 12 illustrates the online adaptation of the parameter
estimates θ̂1, θ̂2, and θ̂3. All estimates remain strictly positive
throughout the simulation, in accordance with the theoretical
design of the adaptive law. Their convergence behavior
further confirms the system’s ability to perform real-time
estimation of uncertain dynamics, which is essential for
maintaining adaptive control capability.
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Fig. 13. Actual control input u and virtual control signal v

Figure 13 compares the actual control input u with the
virtual control signal v. When v < −3, the control input u
enters a saturation region, which is caused by the dead-zone
nonlinearity inherent in the actuator model. Within this
region, u no longer responds linearly to v, resulting in
saturation behavior. Outside the dead-zone, u follows the
predefined piecewise function accurately, indicating proper

signal tracking. At the early stage of control, slight jitter
is observed in u due to external stochastic disturbances.
However, this effect diminishes quickly as the adaptive
mechanism takes effect, leading to stable system operation
and fulfillment of all control objectives.

C. Discussion

The numerical studies demonstrate that the proposed
adaptive CFC scheme, which integrates a BLF and a
second-order fast command filter, enables each state to
respect its prescribed time-varying bounds while ensuring
SGUUB tracking in probability. Compared with first-order
filtered backstepping and conventional DSC benchmarks,
our controller achieves tighter steady-state accuracy and
faster transient convergence, chiefly because the auxiliary
error compensation term effectively cancels the phase lag
introduced by the filter. Moreover, by decomposing the
dead-zone nonlinearity into a linear gain and a bounded
disturbance, the design avoids restrictive inverse mappings
and retains robustness against asymmetric, slowly varying
saturation. The fuzzy logic approximator converges rapidly
owing to the compact domain imposed by the BLF, and
its weight adaptation remains bounded, which precludes
parameter drift. Finally, the single-link manipulator example
under stochastic perturbations confirms that the scheme
preserves performance even when process noise magnitudes
approach the dead-zone thresholds, highlighting practical
applicability to electromechanical drives where sensor jitter
and input dead zones coexist.

VI. CONCLUSION

In this paper, an adaptive fuzzy command filtering
control strategy has been developed for non-strict feedback
stochastic nonlinear systems subject to time-varying all-state
constraints and actuator dead-zone inputs. To handle
these dynamic constraints efficiently, a novel coordinate
transformation coupled with a barrier Lyapunov function
is introduced, avoiding the restrictive matching conditions
imposed by traditional transformations. The nonlinear
dead-zone input problem is simplified by decomposing it into
a linear part and a bounded disturbance, facilitating controller
design. Additionally, a fuzzy logic system is utilized to
approximate unknown nonlinear terms within the system
dynamics. A second-order fast command filter effectively
mitigates the ”differential explosion” phenomenon, with
auxiliary signals compensating for any filtering errors.
Stability analysis demonstrates that the proposed control
scheme ensures all signals remain bounded in probability and
conform to control specifications. Simulation results validate
the superior performance and practicality of the presented
control approach.
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